Issue
Korean Journal of Chemical Engineering,
Vol.39, No.5, 1350-1360, 2022
Oxidized gum arabic cross-linked pectin/O-carboxymethyl chitosan: An antibiotic adsorbent hydrogel
The current work investigated the synthesis possibility of oxidized gum arabic cross-linked pectin/O-carboxymethyl chitosan hydrogels (OGA-Pc-O-CMCS) as a pH-sensitive adsorbent vehicle. During the hydrogel fabrication, the cross-linker oxidized gum arabic (OGA) plays an important role in the enhancement of mechanical stability and the structural compactness of the hydrogel. The effect of OGA content, reaction time, reaction temperature, and reaction pH on the hydrogel swelling and crosslink degree was evaluated, modeled, and optimized statistically using response surface methodology (RSM) based on central composite design (CCD). As the pH of pectin/O-Carboxymethyl chitosan (Pc-O-CMCS) complexation increased up to 6.0, the swelling degree of the hydrogels decreased regardless of the concentration of the OGA. The swelling indices of 101.35% and 70.552% showed the optimum RSM results in the acidic and neutral medium, respectively. The adsorption efficiency of two conventional fluoroquinolones antibiotics (Levofloxacin (LVX) and Delafloxacin (DLX)) in the optimized hydrogel formulations was investigated. The obtained results confirmed that OGA concentration was an important parameter in the swelling processes. The adsorption capacity of the hydrogels was higher in acidic medium (pH 3.9) compared to natural medium (pH 7.1), which indicates the pH-sensitive adsorption behavior of the prepared hydrogel. The maximum antibiotic adsorption occurred after 12 hours: (66.3-87.5%) and (45-53%) for pH 3.9 and 7.1, respectively. The shape and morphological analysis of the beads before and after adsorption was performed using field emission scanning electron microscopy (FE-SEM). The FE-SEM analysis revealed that the shape of the beads changed significantly because of erosion and swelling activity after antibiotics adsorption. Experimental results exhibited that SIP model fitted best to the isotherm adsorption of LVX and DLX onto OGA-Pc-O-CMCS hydrogel.
[References]
  1. Vaughn VM, Seelye SM, Wang XQ, Wiitala WL, Rubin MA, Prescott HC, Inpatient and discharge fluoroquinolone prescribing in Veterans Affairs hospitals between 2014 and 2017, presented at the Open Forum Infectious Diseases (2020).
  2. Bilal M, Mehmood S, Rasheed T, Iqbal HM, Curr. Opin. Environ. Sci. Health, 13, 68, 2020
  3. Felis E, Kalka J, Sochacki A, Kowalska K, Bajkacz S, Harnisz M, Korzeniewska E, Eur. J. Pharmacol., 866, 172813, 2020
  4. Benarab N, Fangninou FF, Int. J. Sci. Res. Publ. IJSRP, 10, 2020
  5. Onesios KM, Jim TY, Bouwer EJ, Biodegradation, 20(4), 441, 2009
  6. Anglada A, Urtiaga A, Ortiz I, J. Chem. Technol. Biotechnol., 84(12), 1747, 2009
  7. Kanakaraju D, Glass BD, Oelgemöller M, J. Environ. Manage., 219, 189, 2018
  8. Li K, Lu X, Zhang Y, Liu K, Huang Y, Liu H, Environ. Res., 185, 109, 2020
  9. Ali I, Alharbi OM, ALOthman ZA, Al-Mohaimeed AM, Alwarthan A, Environ. Res., 170, 389, 2019
  10. Gu S, Kang X, Wang L, Lichtfouse E, Wang C, Environ. Chem. Lett., 17(2), 629, 2019
  11. Baby R, Saifullah B, Hussein MZ, Nanoscale Res. Lett., 14(1), 1, 2019
  12. Samaddar P, Kumar S, Kim KH, Polym. Rev., 59(3), 418, 2019
  13. Iftekhar S, Ramasamy DL, Srivastava V, Asif MB, Sillanpää M, Chemosphere, 204, 413, 2018
  14. Capanema NS, Mansur AA, Mansur HS, de Jesus AC, Carvalho SM, Chagas P, de Oliveira LC, Environ. Technol., 39(22), 2856, 2018
  15. Bao Z, Xian C, Yuan Q, Liu G, Wu J, Adv. Healthc. Mater., 8(17), 190, 2019
  16. Chen M, Ni Z, Shen Y, Xiang G, Xu L, Colloids Surf. A: Physicochem. Eng. Asp., 602, 125, 2020
  17. Liang X, Ma C, Yan X, Zeng H, McClements DJ, Liu X, Liu F, Food Hydrocolloids, 102, 105, 2020
  18. Amr M, Counts M, Kernan J, Mallah A, Mendenhall J, Van Wie B, Abu-Lail N, Gozen BA, Bioprinting, 22, 133, 2021
  19. Perini M, Bertoldi D, Nardin T, Pianezze S, Ferrari G, Larcher R, Food Hydrocolloids, 105, 105, 2020
  20. Sudalai A, Khenkin A, Neumann R, Org. Biomol. Chem., 13(15), 4374, 2015
  21. Manjunath S, Kumar M, Chemosphere, 262, 127, 2021
  22. Gong H, Liu M, Zhang B, Cui D, Gao C, Ni B, Chen J, Int. J. Biol. Macromol., 49(5), 1083, 2011
  23. Huang GQ, Cheng LY, Xiao JX, Han XN, Colloid Polym. Sci., 293(2), 407, 2015
  24. Tareq AZ, Hussein MS, Mustafa AM, Int. Res. J. Pure Appl., 12(4), 1, 2016
  25. Gupta K, Jabrail FH, Carbohydr. Res., 341(6), 744, 2006
  26. Drury JL, Mooney DJ, Biomaterials, 24(24), 4337, 2003
  27. Sarafrazi M, Hamadanian M, Ghasemi AR, Mech. Mater., 138, 103, 2019
  28. Sarker B, Papageorgiou DG, Silva R, Zehnder T, Gul-E-Noor F, Bertmer M, Kaschta J, Chrissafis K, Detsch R, Boccaccini AR, J. Mater. Chem. B, 2(11), 1470, 2014
  29. Lach J, Water, 11(6), 1141, 2019
  30. Reed BE, Matsumoto MR, Sep. Sci. Technol., 28, 2179, 1993
  31. Carvajal-Bernal AM, Gomez-Granados F, Giraldo L, Moreno-Pirajan JC, Eur. J. Chem., 8(2), 112, 2017
  32. Tzabar N, ter Brake H, Adsorption, 22(7), 901, 2016
  33. Mouzam MI, Dehghan M, Asif S, Sahuji T, Chudiwal P, Saudi. Pharm. J., 19(2), 85, 2011