Issue
Korean Journal of Chemical Engineering,
Vol.39, No.6, 1624-1631, 2022
Performance enhancement of alkaline organic redox flow battery using catalyst including titanium oxide and Ketjenblack
Carbon felt (CF) doped by catalyst including titanium oxide and ketjen black (TiO2/KB-CF) is used as negative electrode to enhance the redox reactivity of napthoquinone (NQSO) and thus the performance of aqueous organic redox flow batteries (AORFBs). The redox reactivity of NQSO is better with TiO2/KB-CF than with pristine CF (anodic current density of 13.3 and 19.8mA∙cm-2, and cathodic current density of -15.7 and -21.9mA∙cm-2 with pristine CF and TiO2/KB-CF), while the reaction reversibility of NQSO is also enhanced in TiO2/KB-CF (ratio of peak current density is 0.84 and 0.9 with pristine CF and TiO2/KB-CF). These results are due to the hydrophilic and conductive properties of the TiO2/KB catalyst. TiO2 can hold many hydroxyl groups that are hydrophilic and electro-active group, while KB is a conductive material that induces a fast electron transfer. With these benefits, the charge transfer resistance of the electrode is reduced from 1.8Ω with pristine CF to 1.5Ω with TiO2/KB-CF. In AORFB tests using NQSO and potassium ferrocyanide under alkaline supporting electrolyte, energy efficiency increased from 58% (pristine CF) to 61% (TiO2/KB-CF) with a low capacity loss rate of 0.006 Ah∙L-1 per cycle and the cross-over rate of active materials during cycling of AORFB was very low.
[References]
  1. Niaz H, MansourLakouraj M, Liu J, Korean J. Chem. Eng., 38, 1617, 2021
  2. Yadav D, Kumar S, Verma OP, Pachauri N, Sharma V, Korean J. Chem. Eng., 38, 906, 2021
  3. Karim MR, Han TH, Sawant SY, Shim JJ, Lee MY, Kim WK, Kim JS, Cho MH, Korean J. Chem. Eng., 37, 1241, 2020
  4. Seo JS, Na BK, Korean J. Chem. Eng., 38, 1826, 2021
  5. Kear G, Shah AA, Walsh FC, Int. J. Energy Res., 36, 1105, 2012
  6. Nulu A, Nulu V, Moon JS, Sohn KY, Korean J. Chem. Eng., 38, 1923, 2021
  7. Lim EH, Chun JY, Jo CS, Hwang JK, Korean J. Chem. Eng., 38, 227, 2021
  8. Hwang M, Jeong JS, Lee JC, Yu SI, Jung HS, Cho BS, Kim KY, Korean J. Chem. Eng., 38, 454, 2021
  9. Fan L, Sun P, Yang L, Xu Z, Han J, Korean J. Chem. Eng., 37, 166, 2020
  10. Kim JH, Mo SI, Park GS, Yun JW, Korean J. Chem. Eng., 38, 1834, 2021
  11. Bahoosh R, Jafari M, Bahrainian SS, Korean J. Chem. Eng., 38, 1703, 2021
  12. Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z, Adv. Energy Mater., 1, 394, 2011
  13. Christwardana M, Chung Y, Kwon Y, Korean J. Chem. Eng., 34, 3009, 2017
  14. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q, J. Appl. Electrochem., 41, 1137, 2011
  15. Noack J, Roznyatovskaya N, Herr T, Fischer P, Angew. Chem.-Int. Edit., 54, 9776, 2015
  16. Alotto P, Guarnieri M, Moro F, Renew. Sust. Energ. Rev., 29, 325, 2014
  17. Shin SH, Yun SH, Moon SH, RSC Adv., 3, 9095, 2013
  18. Liu Q, Sleightholme AE, Shinkle AA, Li Y, Thompson LT, Electrochem. Commun., 11, 2312, 2009
  19. Lee W, Kwon BW, Jung M, Serhiichuk D, Henkensmeier D, Kwon Y, J. Power Sources, 439, 227079, 2019
  20. Pham HTT, Jo C, Lee J, Kwon Y, RSC Adv., 6, 17574, 2016
  21. Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334, 2017
  22. Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165, A1388, 2018
  23. Elgammal RA, Tang Z, Sun CN, Lawton J, Zawodzinski TA Jr., Electrochim. Acta, 237, 1, 2017
  24. Jung HY, Cho MS, Sadhasivam T, Kim JY, Roh SH, Kwon Y, Solid State Ion., 324, 69, 2018
  25. Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31, 2081, 2014
  26. Sun CN, Tang Z, Belcher C, Zawodzinski TA, Fujimoto C, Electrochem. Commun., 43, 63, 2014
  27. Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799, 2017
  28. Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z, ChemSusChem, 4, 1388, 2011
  29. Choi C, Kim S, Kim R, Choi Y, Kim S, Jung HY, Yang JH, Kim HT, Renew. Sust. Energ. Rev., 69, 263, 2017
  30. Wei L, Zhao TS, Zeng L, Zeng YK, Jiang HR, J. Power Sources, 341, 318, 2017
  31. Di Blasi A, Busaccaa C, Di Blasia O, Briguglioa N, Squadritoa G, Antonuccia V, Appl. Energy, 190, 165, 2017
  32. González Z, Sánchez A, Blanco C, Granda M, Menéndez R, Santamaría R, Electrochem. Commun., 13, 1379, 2011
  33. Vijayakumar M, Li L, Graff G, Liu J, Zhang H, Yang Z, Hu JZ, J. Power Sources, 196, 3669, 2011
  34. Chung Y, Noh C, Kwon Y, J. Power Sources, 438, 227063, 2019
  35. Noh C, Kwon BW, Chung Y, Kwon Y, J. Power Sources, 406, 26, 2018
  36. Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187, 2018
  37. Lee W, Park G, Chang D, Kwon Y, Korean J. Chem. Eng., 37, 2326, 2020
  38. Chu C, Kwon BW, Lee W, Kwon Y, Korean J. Chem. Eng., 36, 1732, 2019
  39. DeBruler C, Hu B, Moss J, Luo J, Liu TL, ACS Energy Lett., 3, 663, 2018
  40. Winsberg J, Stolze C, Muench S, Liedl F, Hager MD, Schubert US, ACS Energy Lett., 1, 976, 2016
  41. Winsberg J, Hagemann T, Janoschka T, Hager MD, Schubert US, Angew. Chem.-Int. Edit., 56, 686, 2017
  42. Lee W, Park G, Kim Y, Chang D, Kwon Y, Chem. Eng. J., 398, 125610, 2020
  43. Wei X, Pan W, Duan W, Hollas A, Yang Z, Li B, Nie Z, Liu J, Reed D, Wang W, Sprenkle V, ACS Energy Lett., 2, 2187, 2017
  44. Lee W, Kwon BW, Kwon Y, ACS Appl. Mater. Interfaces, 10, 36882, 2018
  45. Lin K, Gómez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG, Nat. Energy, 1, 1, 2016
  46. Lee W, Kwon Y, Korean Chem. Eng. Res., 57, 695, 2019
  47. Liu T, Wei Z, Nie Z, Sprenkle V, Wang W, Adv. Energy Mater., 6, 1501449, 2016
  48. Park G, Lee W, Kwon Y, Korean Chem. Eng. Res., 57, 868, 2019
  49. Hofmann JD, Pfanschilling FL, Krawczyk N, Geigle P, Hong L, Schmalisch S, Wegner HA, Moleenhauer D, Janek J, Schröder D, Chem. Mater., 30, 762, 2018
  50. Yang B, Hoober-Burkhardt L, Wang F, Prakash GS, Narayanan SR, J. Electrochem. Soc., 161, A1371, 2014
  51. Hoober-Burkhardt L, Krishnamoorthy S, Yang B, Murali A, Nirmalchandar A, Prakash GS, Narayanan SR, J. Electrochem. Soc., 164, A600, 2017
  52. Permatasari A, Lee W, Kwon Y, Chem. Eng. J., 383, 123085, 2020
  53. Hofmann JD, Schmalisch S, Schwan S, Hong L, Wegner HA, Mollenhauer D, Janek J, Schröder D, Chem. Mater., 32, 3427, 2020
  54. Lin K, Chen Q, Gerhardt MR, Tong L, Kim SB, Eisenach L, Valle AW, Hardee D, Gordon RG, Aziz MJ, Marshak MP, Science, 349, 1529, 2015
  55. Schwan S, Schröder D, Wegner HA, Janek J, Mollenhauer D, ChemSusChem, 13, 5480, 2020
  56. Gerhardt MR, Tong L, Gómez‐Bombarelli R, Chen Q, Marshak MP, Galvin CJ, Aspuru-Guzik AA, Gordon RG, Aziz MJ, Adv. Energy Mater., 7, 1601488, 2017
  57. Lee W, Park G, Kwon Y, Chem. Eng. J., 386, 123985, 2020
  58. Lee W, Permatasari A, Kwon BW, Kwon Y, Chem. Eng. J., 358, 1438, 2019
  59. Lee W, Permatasari A, Kwon Y, J. Mater. Chem. C, 8, 5727, 2020
  60. Chu C, Lee W, Kwon Y, Korean Chem. Eng. Res., 57, 847, 2019
  61. Lee W, Chung KY, Kwon Y, Korean Chem. Eng. Res., 57, 239, 2019
  62. Lv Y, Han C, Zhu Y, Zhang T, Yao S, He Z, Dai L, Wang L, J. Mater. Sci. Technol., 75, 96, 2021
  63. Ryu J, Park M, Cho J, J. Electrochem. Soc., 163, A5144, 2015
  64. Yang D, Guo Y, Tang H, Wang Y, Yang D, Ming P, Zhang C, Li B, Zhu S, Int. J. Hydrog. Energy, 46, 33300, 2021
  65. Carney TJ, Collins SJ, Moore JS, Brushett FR, Chem. Mater., 29, 4801, 2017
  66. Kuroda S, Tobori N, Sakuraba M, Sato Y, J. Power Sources, 119, 924, 2003
  67. Sakai N, Wang R, Fujishima A, Watanabe T, Hashimoto K, Langmuir, 14, 5918, 1998
  68. Al-Yasiri M, Park J, Appl. Energy, 222, 530, 2018