Issue
Korean Journal of Chemical Engineering,
Vol.39, No.5, 1232-1239, 2022
Preparation and electrochemical characterization of porous carbon pearls from carboxymethyl cellulose for electrical double-layer capacitors
Porous carbon pearls (PCPs) were successfully prepared from syringe droplets of highly concentrated carboxymethyl cellulose solution via ice-templating followed by carbonization. The PCPs, which look like a solid bead with a pearly luster, were found to have well-developed bi-modal pore structures with a large specific surface area of 1,338.6m2/g and a total pore volume of 0.81 cm3/g (a mesopore volume of 0.28 cm3/g and a micropore pore volume of 0.53 cm3/g). In a three-electrode system, the PCPs-based electrode exhibited high supercapacitive performance, such as a high specific capacitance of 217 F/g at 1A/g in 6M aqueous KOH electrolyte, outstanding cycling stability of 100% after 10,000 cycles at 30 A/g, and excellent rate capability of 63.7%. To investigate actual supercapacitive performance, a symmetric capacitor device was assembled using a coin cell. The PCPs-based device showed a specific capacitance of 37 F/g at a current density of 1A/g and a power density of 5.0 kW/kg at an energy density of 2.88Wh/kg. Furthermore, the PCPs-based device also exhibited superior cycling stability with capacitance retention of 98.5% after 10,000 cycles at a current density of 10 A/g.
[References]
  1. Libich J, Máca J, Vondrák J, Čech O, Sedlaříková M, J. Energy Storage, 17, 224, 2018
  2. Fracowiak E, Béguin F, Carbon, 39, 937, 2001
  3. Zhang LL, Zhao XS, Chem. Soc. Rev., 38, 2520, 2009
  4. Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z, Carbon, 67, 119, 2014
  5. Gao Y, Zhou YS, Qian M, He XN, Redepenning J, Goodman P, Li HM, Jiang L, Lu YF, Carbon, 51, 52, 2013
  6. Song S, Ma F, Wu G, Ma D, Geng W, Wan J, J. Mater. Chem. A, 2, 18154, 2015
  7. Yin J, Zhang W, Alhebshi NA, Salah N, Alshareef HN, Small Methods, 4, 1900853, 2020
  8. Lee BM, Choi BS, Lee JY, Hong SK, Lee JS, Choi JH, Carbon Lett., 31, 67, 2021
  9. Zhang C, Hatzell KB, Boota M, Dyatkin B, Beidaghi M, Long D, Qiao W, Kumbur EC, Gogotsi Y, Carbon, 77, 155, 2014
  10. Lee W, Moon JH, ACS Appl. Mater. Interfaces, 6, 13968, 2014
  11. Chen Y, Zhang G, Zhang J, Guo H, Feng X, Chen Y, J. Mater. Sci. Technol., 34, 2189, 2018
  12. Xu Y, Zhang Y, Mater. Lett., 139, 145, 2015
  13. Yu M, Han Y, Li J, Wang L, Chem. Eng. J., 324, 287, 2017
  14. Yang W, Mao S, Yang J, Shang T, Song H, Mabon J, Swiech W, Vance JR, Yue Z, Dillon SJ, Xu H, Xu B, Sci. Rep., 6, 24187, 2016
  15. Lee BM, Jeong CU, Hong SK, Yun JM, Choi JH, J. Ind. Eng. Chem., 82, 367, 2020
  16. Lee BM, Nam HG, Choi HY, Hong SK, Jeong YG, Choi JH, Macromol. Mater. Eng., 303, 1800296, 2018
  17. Koo BJ, Lee BM, Kim DH, Hong SK, Go KS, Kwon EH, Kim SH, Choi JH, Lee KB, ACS Appl. Mater. Interfaces, 13, 13106, 2021
  18. Lee BM, Umirov N, Lee JY, Lee JY, Choi BS, Hong SK, Kim SS, Choi JH, Int. J. Energy Res., 45, 9530, 2021
  19. Jiang Y, Wang Y, Zeng D, Wang Y, Ma Y, Wang H, Zhang X, Dai X, J. Chem. Soc.-Dalton Trans., 48, 4702, 2019
  20. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051, 2015
  21. Miao L, Duan H, Wang Z, Lv Y, Xiong W, Zhu D, Gan L, Li L, Liu M, Chem. Eng. J., 382, 122945, 2020
  22. Pokrzywinski J, Keum JK, Ruther RE, Self EC, Chi M, Meyer H, Littrell KC, Aulakh D, Marble S, Ding J, Wriedt M, Nanda J, Mitlin D, J. Mater. Chem. A, 5, 13511, 2017
  23. Lee YK, Chung S, Hwang SY, Lee S, Eom KS, Hong SB, Park GG, Kim BJ, Lee JJ, Joh HI, Korean J. Chem. Eng., 36, 1543, 2019
  24. Yu J, Fu N, Zhao J, Liu R, Li F, Du Y, Yang Z, ACS Omega, 4, 15904, 2010
  25. Fan L, Sun P, Yang L, Xu Z, Han J, Korean J. Chem. Eng., 37, 166, 2020
  26. Ghosh S, Yong WD, Jin EM, Polaki SR, Jeong SM, Jun H, Korean J. Chem. Eng., 36, 312, 2019
  27. Kumar YA, Kumar KD, Kim HJ, J. Chem. Soc.-Dalton Trans., 49, 4050, 2020