Issue
Korean Journal of Chemical Engineering,
Vol.39, No.6, 1517-1523, 2022
Highly elastic aerogel derived from spent coffee grounds as oil removal adsorbent
In the face of increasing environmental pollution, aerogels have emerged as valuable materials for potential oil/water separation. However, many of the currently developed aerogels have unsatisfactory compressibility, high cost and a single hydrophobic modification method, which limits larger-scale application. In this work, a type of aerogel with compressible, inexpensive, and fully biodegradable features was designed via a novel zirconium chloride modification strategy. Typically, a series of aerogels (HCSW-1, HCSW-2, and HCSW-3) were readily prepared from a mixture of spent coffee grounds, waste paper and sodium alginate. The prepared aerogels exhibited good elasticity, low density (0.024 g cm-3), high porosity (98.3%), efficient oil/water separation and good oil uptake (23-44 times of its weight). In addition, the as-prepared aerogels can be easily recycled several times, thus meeting the demand of actual oil/water separation. Such prominent results provide a new perspective for the development of efficient hydrophobic aerogels in the treatment of offshore oil spills and industrial wastewater.
[References]
  1. Rostami S, Abessi O, Amini-Rad H, Mar. Pollut. Bull., 138, 302, 2019
  2. Soliman EM, Ahmed SA, Fadl AA, J. Environ. Health Sci. Eng., 18, 79, 2020
  3. Wang Y, Lee K, Liu D, Guo J, Han Q, Liu X, Zhang J, Environ. Pollut., 263, 114343, 2020
  4. Li Y, Liu X, Cai W, Cao Y, Sun Y, Tan F, Korean J. Chem. Eng., 35, 1119, 2018
  5. Zhuang GL, Wu SY, Lo YC, Chen YC, Tung KL, Tseng HH, J. Membr. Sci., 605, 118091, 2020
  6. Hashemi F, Hashemi H, Shahbazi M, Dehghani M, Hoseini M, Shafeie A, Water Resour. Ind., 23, 100123, 2020
  7. Ozgun H, Ersahin ME, Erdem S, Atay B, Kose B, Kaya R, Altinbas M, Sayili S, Hoshan P, Atay D, Eren E, Kinaci C, Koyuncu I, J. Chem. Technol. Biotechnol., 88, 1576, 2013
  8. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S, J. Porous Mat., 10, 159, 2003
  9. Ma M, Chen Y, Zhao X, Tan F, Wang Y, Cao Y, Cai W, J. Saudi Chem. Soc., 24, 915, 2020
  10. Wang L, Shi C, Wang L, Pan L, Zhang X, Zou JJ, Nanoscale, 12, 4790, 2020
  11. Bayat A, Aghamiri SF, Moheb A, Vakili-Nezhaad GR, Chem. Eng. Technol., 28, 1525, 2005
  12. Teichner SJ, Nicolaon GA, Vicarini MA, Gardes GEE, Adv. Colloid Interface Sci., 5, 245, 1976
  13. Yogapriya R, Kasibhatta KRD, Acs Appl. Nano Mater., 3, 5816, 2020
  14. Kim J, Kim H, Baek G, Lee C, Waste Manage., 60, 322, 2017
  15. Arulrajah A, Kua TA, Suksiripattanapong C, Horpibulsuk S, Shen JS, J. Clean Prod., 162, 1491, 2017
  16. Yue X, Zhang T, Yang D, Qiu F, Li Z, J. Clean Prod., 199, 411, 2018
  17. Zhang L, Chen H, Sun J, Shen J, Chem. Mater., 19, 948, 2007
  18. Xu Z, Zhou H, Jiang X, Li J, Huang F, Iet Nanobiotechnol., 11, 929, 2017
  19. Li L, Hu T, Sun H, Zhang J, Wang A, Acs Appl. Mater. Interfaces, 9, 18001, 2017
  20. Wang C, He GH, Cao JL, Fan LH, Cai WQ, Yin YH, Acs Appl. Polym. Mater., 2, 1124, 2020
  21. Yang J, Xia Y, Xu P, Chen B, Cellulose, 25, 3533, 2018
  22. Brown PS, Atkinson ODLA, Badyal JPS, Acs Appl. Mater. Interfaces, 6, 7504, 2014
  23. Zhou L, Xu Z, J. Hazard. Mater., 388, 121804, 2020
  24. Atabani AE, Shobana S, Mohammed MN, Uguz G, Kumar G, Arvindnarayan S, Aslam M, Al-Muhtaseb AAH, Fuel, 244, 419, 2019
  25. Belhouchat N, Zaghouane-Boudiaf H, Viseras C, Appl. Clay Sci., 135, 9, 2017
  26. Wang Y, Feng Y, Yao J, J. Colloid Interface Sci., 533, 182, 2019
  27. Kim SJ, Moon JB, Kim GH, Ha CS, Polym. Test, 27, 801, 2008
  28. Cheng Q, Ye D, Chang C, Zhang L, J. Membr. Sci., 525, 1, 2017
  29. Sehaqui H, Zhou Q, Berglund LA, Compos. Sci. Technol., 71, 1593, 2011
  30. Fumagalli M, Ouhab D, Boisseau SM, Heux L, Biomacromolecules, 14, 3246, 2013
  31. Zhou L, Zhai S, Chen Y, Xu Z, Polymer, 11, 712, 2019
  32. Korhonen JT, Kettunen M, Ras RHA, Ikkala O, Acs Appl. Mater. Interfaces, 3, 1813, 2011