Issue
Korean Journal of Chemical Engineering,
Vol.39, No.5, 1227-1231, 2022
Optimization of high-energy ball milling process for uniform p-type Bi-Sb-Te thermoelectric material powder
Ball milling is widely used for producing powders of thermoelectric materials owing to its simplicity and scalability. In this research, we investigated the particle shape and size in p-type Bi-Sb-Te materials.the best-known and only commercially available thermoelectric materials at present.after high-energy ball milling. Although Bi-Sb-Te materials are known to be brittle, some ductile properties, such as particle agglomeration and welding, were observed. To avoid an increase in particle size via welding and to obtain particles with highly uniform sizes, two-step ball milling was performed and particle sizes were analyzed. The ball-milled powder was consolidated and sintered, and the resulting pellets showed no crystallographic orientation and consequently exhibited uniform thermal and electrical conductivities regardless of measurement direction.
[References]
  1. Sootsman JR, Chung DY, Kanatzidis MG, Angew. Chem.-Int. Edit., 48, 8616, 2009
  2. Minnich AJ, Dresselhaus MS, Ren ZF, Chen G, Energy Environ. Sci., 2, 466, 2009
  3. Snyder GJ, Toberer ES, Nat. Mater., 7, 105, 2008
  4. Yadav GG, Susoreny JA, Zhang G, Yang H, Wu Y, Nanoscale, 3, 3555, 2011
  5. Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG, Adv. Mater., 22, 3970, 2010
  6. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z, Science, 320, 634, 2008
  7. Lee G, Lee D, Ha G, Met. Mater. Int., 17, 245, 2011
  8. Ren W, Cheng C, Ren Z, Zhong Y, Physica B, 405, 4931, 2010
  9. Chappell JS, Ring TA, Birchall JD, J. Appl. Phys., 60, 383, 1986
  10. Hossain MS, Li T, Yu Y, Yong J, Bahk JH, Skafidas E, RSC Adv., 10, 8421, 2020
  11. Kim F, Kwon B, Eom Y, Lee JE, Park S, Jo S, Park SH, Kim BS, Im HJ, Lee MH, Min TS, Kim KT, Chae HG, King WP, Son JS, Nat. Energy, 3, 301, 2018
  12. Mostafaei A, Vecchis PRD, Nettleship I, Chmielus M, Mater. Des., 162, 375, 2019
  13. Wu H, Cheng Y, Liu W, He R, Zhou M, Wu S, Song X, Chen Y, Ceram. Int., 42, 17290, 2016
  14. Kanatzia A, Papageorgiou C, Lioutas C, Kyratsi T, J. Electron. Mater., 42, 1652, 2013
  15. Lin SS, Liao CN, J. Appl. Phys., 110, 093707, 2011
  16. Son JH, Oh MW, Kim BS, Park SD, Min BK, Kim MH, Lee HW, J. Alloy. Compd., 566, 168, 2013
  17. Suryanarayana C, Prog. Mater. Sci., 46, 1, 2001
  18. Huang JY, Wu YK, Ye HQ, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 199, 165, 1995
  19. Lee J, Kim J, Lim SY, Kwon JY, Im J, Lee SM, Moon SE, Electron. Lett., 53, 930, 2017
  20. Chen X, Liu L, Dong Y, Wang L, Prog. Nat. Sci. Mater. Int., 22, 201, 2012
  21. Shen JJ, Hu LP, Zhu TJ, Zhao XB, Appl. Phys. Lett., 99, 124102, 2011