Issue
Korean Journal of Chemical Engineering,
Vol.39, No.8, 2201-2210, 2022
The structure and properties of water-based silicone blended phenolic resin and its application in oil filter paper-based materials
The research on water-based and enhanced modification of phenolic resin for impregnation of automobile engine oil filter paper has attracted widespread attention. First, the organosilicon was modified, the polyoxyethylene ether (PEO) and allyl glycidyl ether (AGE) were introduced through the hydrosilylation reaction, and the optimal modification conditions of PEO and AGE were discussed. The results show that when the PEO:AGE molar ratio is 3 : 1, the modified silicone prepared has good dispersibility in water. Scanning electron microscopy (SEM) energy dispersive imaging (EDS) was used to analyze the morphology of resin impregnated filter paper. The results show that when the mass ratio of modified silicone to phenolic resin is 5%, the silicone molecular chains and the phenolic resin form a uniform three-dimensional network structure by bonding through chemical bonds. Compared with unmodified pure phenolic resin impregnated filter paper, the mechanical properties and engine oil resistance properties of the silicone-modified phenolic resin-impregnated filter paper are improved.
[References]
  1. Adachi T, Kataoka T, Higuchi M, Int. J. Adhes. Adhes., 56, 53, 2015
  2. Xie ZJ, Liu C, Xu GL, J. Vinyl Addit. Technol., 27, 833, 2021
  3. Pospiech P, Chojnowski J, Mizerska U, J. Mol. Catal. A-Chem., 424, 402, 2016
  4. Meister TK, Kück JW, Riener K, J. Mol. Catal. A-Chem., 337, 157, 2016
  5. Guo AR, Li J, Liu C, Chem. J. Chin. Univ.-Chin., 37, 2284, 2016
  6. Xu L, Li XF, Zhang YM, RSC Adv., 11, 5896, 2021
  7. Asima M, Saba N, Jawaid M, Curr. Anal. Chem., 14, 185, 2018
  8. Sunil JT, Anoop AK, Joseph R, Int. J. Polym. Mater. Polym. Biomat., 59, 488, 2010
  9. Yang XJ, Liu S, Zhao ZY, Sep. Purif. Technol., 255, 117672, 2021
  10. Li C, Ma ZZ, Zhang XW, Thermochim. Acta, 639, 53, 2016
  11. Li S, Chen FH, Han Y, Mater. Chem. Phys., 165, 25, 2015
  12. Milazzo M, Amoresano A, Pasquino R, Macromolecules, 54, 11372, 2021
  13. Zhang H, Yang LT, Li YT, J. Appl. Polym. Sci., 17, 134, 2017
  14. Bu ZY, Hu JJ, Li BG, Thermochim. Acta, 575, 244, 2014
  15. Wu S, Zhang XQ, Sun Y, Colloid Polym. Sci., 299, 1327, 2021
  16. Xi JF, Lou YL, Shan J, Cellulose, 28, 10565, 2021
  17. Siebe SH, Chen QL, Li XY, Analyst, 146, 1281, 2021
  18. Nakamura K, Nakamura J, Matsumoto K, J. Taiwan Inst. Chem. Eng., 94, 31, 2019
  19. Jiang YG, Zhang ZP, Qi YH, Polymer, 13, 2355, 2021
  20. Zhang QQ, Zhu YJ, Wu J, J. Colloid Interface Sci., 575, 78, 2020
  21. Alex AS, Bhuvaneswari S, Chandran SC, J. Anal. Appl. Pyrolysis, 129, 241, 2018
  22. Rowles MR, J. Appl. Crystallogr., 53, 1625, 2020
  23. Sarkar B, Goyal R, Pendem C, J. Mol. Catal. A-Chem., 424, 17, 2016
  24. Han RJ, Shao YR, Quan XD, Polym. Compos., 42, 2370, 2021
  25. Chen CH, Liou YL, Mao CF, Polym. Bull., 78, 283, 2021
  26. Eduok U, Faye O, Szpunar J, Prog. Org. Coat., 111, 24, 2017
  27. Qin XX, Liu JJ, Zhang Z, Trac-Trends Anal. Chem., 143, 116371, 2021
  28. Piltan S, Seyfi J, Hejazi I, Cellulose, 23, 3913, 2016
  29. Friess M, Boyukbas M, Vogel F, Int. J. Appl. Ceram. Technol., 19, 34, 2021
  30. Kotb Y, Cagnard A, Houston KR, J. Colloid Interface Sci., 608, 634, 2022
  31. Ling YQ, Zhang XQ, Yan LW, Mater. Chem. Phys., 275, 125283, 2022
  32. Lin D, Li BW, Qi J, Sens. Actuators B-Chem., 303, 127213, 2020
  33. Yin T, Fu QG, Zhou L, Compos. Pt. B-Eng., 192, 101991, 2020