Issue
Korean Journal of Chemical Engineering,
Vol.39, No.6, 1384-1395, 2022
Investigation on flow characteristic and reaction process inside an EVA autoclavereactor using CFD modeling combined with polymerization kinetics
EVA is an important high-performance resin material obtained by the copolymerization of ethylene and vinyl acetate. In the present study, a comprehensive computational fluid dynamics (CFD) model was established to study the EVA free radical copolymerization process. The polymerization kinetic model was combined with the CFD model. The EVA copolymerization reaction mechanism was verified by comparing the simulation results with the experimental results. Detailed information of the flow field inside the industrial EVA autoclave reactor was obtained. With the increase of the impeller speed, both the axial and radial flows inside the autoclave reactor were enhanced. The high impeller speed improved the fluid mixing and the homogeneity of temperature distribution. The increase of the impeller speed improved the initiator dispersion near the inlets, thereby increasing the efficiency of the initiator. The influence of operating conditions on monomer conversion and specific initiator consumption per 1% of the monomer reacted was investigated. The simulation results give deep insight into the free radical copolymerization process inside the autoclave reactor and supply the guidelines for developing an industrial autoclave reactor.
[References]
  1. Tambe SP, Singh SK, Patri M, Kumar D, Prog. Org. Coat., 62, 382, 2008
  2. Zarrouki A, Espinosa E, Boisson C, Monteil V, Macromolecules, 50, 3516, 2017
  3. Ghiass M, Hutchinson RA, Polym. React. Eng., 11, 989, 2003
  4. Wells GJ, Ray WH, AIChE J., 51, 3205, 2005
  5. Pladis P, Kiparissides CA, Ind. Eng. Chem. Res., 58, 13093, 2019
  6. Kiparissides C,Verros G, Macgregor JA, J. Macromol. Sci.-Polym. Rev, 33, 437, 1993
  7. Lee Y, Jeon K, Cho J, Na J, Park J, Jung I, Park J, Park MJ, Lee WB, Ind. Eng. Chem. Res., 58, 16459, 2019
  8. Patel H, Dhib R, Ein-Mozaffari F, Chem. Eng. Technol., 33, 258, 2010
  9. Roudsari SF, Ein-Mozaffari F, Dhib R, Chem. Eng. J., 219, 429, 2013
  10. Xu C, Wang J, Gu X, Feng L, Chem. Eng. Commun., 205, 857, 2018
  11. Wells GJ, Ray WH, Macromol. Mater. Eng., 290, 319, 2005
  12. Luft G, Jabbari M, Dorn M, Angew. Makromol. Chem., 238, 87, 1996
  13. Chien IL, Kan TW, Chen BS, Comput. Chem. Eng., 31, 233, 2007
  14. Jacob N, Dhib R, J. Ind. Eng. Chem., 18, 1781, 2012
  15. Sarmoria C, Brandolin A, Lopez-Rodriguez A, Whiteley KS, Fernandez BD, Polym. Eng. Sci., 41, 1480, 2000
  16. Cui J, Ni L, Jiang J, Pan Y, Wu H, Chen Q, Org. Process Res. Dev., 23, 389, 2019
  17. Read NK, Zhang SX, Ray WH, AIChE J., 43, 104, 1997
  18. Wehinger GD, Eppinger T, Kraume M, Chem. Eng. Sci., 122, 197, 2015
  19. Zhuang Y, Gao X, Zhu Y, Luo Z, Powder Technol., 221, 419, 2012
  20. Shin T, Liou WW, Shabbir A, Yang Z, Zhu J, Comput. Fluids, 24, 227, 1995
  21. Becker P, Buback M, Sandmann J, Macromol. Chem. Phys., 203, 2113, 2002
  22. Xie T, Hamielec A, Macromol. Theory Simul., 2, 777, 1993
  23. Xie T, Hamielec A, Macromol. Theory Simul., 2, 455, 1993
  24. Xie T, Hamielec A, Macromol. Theory Simul., 2, 421, 1993
  25. Hamielec A, MacGregor J, Penlidis A, Makromol. Chem. Macromol. Symp., 10-11, 521, 1987
  26. Soares J, Chem. Eng. Sci., 56, 4131, 2001
  27. Pladis P, Kiparissides C, Chem. Eng. Sci., 53, 3315, 1998
  28. Hulburt H, Katz S, Chem. Eng. Sci., 19, 555, 1964
  29. Roudsari S, Turcotte G, Dhib R, Ein-Mozaffari F, Comput. Chem. Eng., 45, 124, 2012
  30. Zhang S, Ray W, AIChE J., 43, 1265, 1997
  31. He C, Wang J, Wang R, Zhang X, Renew. Energy, 168, 1177, 2021
  32. Erdogan S, Alpbaz M, Karagöz AR, Chem. Eng. J., 86, 259, 2002