Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 798-810, 2022
Molecular weight distribution modeling of LDPE in a continuous stirred-tankreactor using coupled deterministic and stochastic approach
A hybrid approach that combines the method of moments and Monte Carlo simulation to predict the molecular weight distribution of low-density polyethylene for a continuous stirred tank reactor system is proposed. A ‘Block’, which is repeating reaction group, is introduced for the calculation cost-effective simulation. This model called the ‘block Kinetic Monte Carlo’ is ~10 to 32 times faster than Neuhaus’s model. The model can be applied to any steady state system and provide a calculation cost reduction effect, where one reaction is much faster than others, for example, the propagation reaction. Furthermore, we performed a case study on the effects of the system temperature and initiator concentration on the MWD and reaction rate ratio. Based on the simulation results of 180 case studies, we determined a quantitative guideline for the appearance of shoulder, which is a function of the rate ratio of reactions to the propagation reaction.
[References]
  1. Bovey FA, Schilling FC, McCrackin FL, Wagner HL, Macromolecules, 9, 76, 1976
  2. Beasley JK, J. Am. Chem. Soc., 75, 6123, 1953
  3. Ray WH, J. Macromol. Sci., Rev. Macromol. Chem., 8, 1, 1972
  4. Crowley TJ, Choi KY, Ind. Eng. Chem. Res., 36, 1419, 1997
  5. Iedema PD, Wulkow M, Hoefsloot HC, Macromolecules, 33, 7173, 2000
  6. Son SH, Han JJ, Lee JM, Polymer, 126, 74, 2017
  7. Louie BM, Carratt GM, Soong DS, J. Appl. Polym. Sci., 30, 3985, 1985
  8. Mikos AG, Takoudis CG, Peppas NA, Macromolecules, 19, 2174, 1986
  9. Zhu S, Hamielec AE, Macromolecules, 22, 3093, 1989
  10. Zhu S, Hamielec AE, J. Polym. Sci. Part B: Polym. Phys., 32, 929, 1994
  11. Shin S, Choi S, Na J, Jung I, Kim MK, Park MJ, Lee WB, Chem. Eng. J., 131829,
  12. Wells GJ, Ray WH, Macromol. Mater. Eng., 290, 319, 2005
  13. Pladis P, Kiparissides CA, Chem. Eng. Sci., 53, 3315, 1998
  14. Hutchinson RA, Macromol. Theory Simul., 10, 144, 2001
  15. Zhang SX, Ray WH, AIChE J., 43, 1265, 1997
  16. Tobita H, J. Polym. Sci., Part B: Polym. Phys., 39, 391, 2001
  17. Yaghini N, Iedema PD, Chem. Eng. Sci., 116, 144, 2014
  18. Meimaroglou D, Pladis P, Baltsas A, Kiparissides C, Chem. Eng. Sci., 66, 1685, 2011
  19. Kim DM, Busch M, Hoefsloot HC, Iedema PD, Chem. Eng. Sci., 59, 699, 2004
  20. Kiparissides C, Krallis A, Meimaroglou D, Pladis P, Baltsas A, Chem. Eng. Technol., 33, 1754, 2010
  21. Iedema PD, Hoefsloot HC, Macromol. Theory Simul., 10, 855, 2001
  22. Kim DM, Iedema PD, Chem. Eng. Sci., 59, 2039, 2004
  23. Kim DM, Iedema PD, Chem. Eng. Sci., 63, 2035, 2008
  24. Yaghini N, Iedema PD, Chem. Eng. Sci., 130, 310, 2015
  25. Gillespie DT, J. Phys. Chem., 81, 2340, 1977
  26. Tobita H, Macromol. Theory Simul., 5, 129, 1996
  27. Tobita H, Macromol. React. Eng., 7, 181, 2013
  28. Tobita H, Macromol. Theory Simul., 23, 182, 2014
  29. Rogosic M, Mencer HJ, Gomzi Z, Eur. Polym. J., 32, 1337, 1996
  30. Neuhaus E, Herrmann T, Vittorias I, Lilge D, Mannebach G, Gonioukh A, Busch M, Macromol. Theory Simul., 23, 415, 2014
  31. Sch?tte C, Wulkow M, Macromol. React. Eng., 4, 562, 2010
  32. Eckes D, Busch M, Macromol. Symp., 360, 23, 2016
  33. Meimaroglou D, Kiparissides CA, Macromolecules, 43, 5820, 2010
  34. Feucht P, Tilger B, Luft G, Chem. Eng. Sci., 40, 1935, 1985
  35. Tobita H, Processes, 3, 731, 2015
  36. Chien IL, Kan TW, Chen BS, Comput. Chem. Eng., 31, 233, 2007
  37. Kotliar AM, J. Polym. Sci., Part A: Gen. Pap., 2, 4303, 1964
  38. Krallis A, Pladis P, Kiparissides C, Macromol. Theory Simul., 16, 593, 2007
  39. Kolhapure NH, Fox RO, Chem. Eng. Sci., 54, 3233, 1999
  40. Marini L, Georgakis C, Chem. Eng. Commun., 30, 361, 1984