Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 736-759, 2022
Study of rice husk ash derived MCM-41-type materials on pore expansion,Al incorporation, PEI impregnation, and CO2 adsorption
Conventional MCM-41 (M41), silica-pure pore-expanded MCM-41 (PM41), and Al-containing poreexpanded MCM-41 (PM41Ax) were synthesized from rice husk ash and tested as polyethyleneimine (PEI) supports for CO2 capture. Samples were characterized by small-angle X-ray diffraction, X-ray fluorescence spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, granulometric analysis, and nitrogen adsorption techniques. The PEI loading rate and CO2 adsorption-desorption performance were determined via thermogravimetric analysis. The effects of pore expansion, heteroatom Al incorporation, PEI loading rate, and Si/Al ratio on CO2 adsorption performance were examined. For the first time, the amount of PEI impregnated in PM41 was increased beyond 55 wt%, and the low-Si/Al-ratio PM41Ax support was used to load PEI in a novel procedure. Results show that at the same PEI loading rate, PM41 is always superior to M41 regarding adsorption capacity and adsorption rate. For a PEI loading rate >50 wt%, the superiority is amplified, reaching 15.9% and 21.3%, respectively. The use of the high-Al-containing PM41Ax support further increases adsorption capacity and adsorption rate by 13.4% and 9.6%, respectively. The presented reaction has a hybrid adsorption characteristic that includes both chemisorption and physisorption. Avrami’s fractional-order kinetic model describes the adsorption best. Over the entire time scale, the adsorption rate is determined by several kinetic diffusion-controlled processes. The intraparticle diffusion and equilibrium adsorption are two predominant rate-limiting steps, and their control ranges change with temperature. After five cycles of adsorption and desorption, the desorption ratio was as high as 99%, and the working capacity still retained 96.5% of the original capacity. In addition, the presence of water vapor increased the adsorption capacity of the adsorbents presented in this study. These advantages make them successful iin capturing CO2 in the post-combustion scenario.
[References]
  1. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CKI, Shah N, Fennell P, Energy Environ. Sci., 3, 1645, 2010
  2. Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O'Hare D, Zhong Z, Energy Environ. Sci., 7, 3478, 2014
  3. Przepi?rski J, Skrodzewicz M, Morawski AW, Appl. Surf. Sci., 225, 235, 2004
  4. Wang Y, Du T, Song Y, Che S, Fang X, Zhou L, Solid State Sci., 73, 27, 2017
  5. Wang Y, Du T, Qiu Z, Song Y, Che S, Fang X, Mater. Chem. Phys., 207, 105, 2018
  6. Wang Y, Du T, Jia H, Qiu Z, Song Y, Solid State Sci., 86, 24, 2018
  7. Sayari A, Belmabkhout Y, Serna-Guerrero R, Chem. Eng. J., 171, 760, 2011
  8. Yan Q, Lin Y, Kong C, Chen L, Chem Commun, 49, 6873, 2013
  9. Liu F, Chen S, Gao Y, Xie Y, J. Appl. Polym. Sci., 134, 45046, 2017
  10. Elkhalifah AEI, Maitra S, Bustam MA, Murugesan T, Appl. Clay Sci., 83-84, 391, 2013
  11. Ma L, Bai R, Hu G, Chen R, Hu X, Dai W, Dacosta HFM, Fan M, Energy Fuels, 27, 5433, 2013
  12. Zhao X, Hu X, Hu G, Bai R, Dai W, Fan M, Luo M, J. Mater. Chem. A, 1, 6208, 2013
  13. Zhou Z, Anderson CM, Butler SK, Thompson SK, Whitty KJ, Shen TC, Stowers KJ, J. Mater. Chem. A, 5, 10486, 2017
  14. Das S, Maity A, Pradhan M, Jana S, Anal. Chem., 88, 2205, 2016
  15. Leal O, Bol?var C, Ovalles C, Garc?a JJ, Espidel Y, Inorg. Chim. Acta, 240, 183, 1995
  16. Huang HY, Yang RT, Chinn D, Munson CL, Ind. Eng. Chem. Res., 42, 2427, 2003
  17. Attard GS, Glyde JC, G?ltner CG, Nature, 378, 366, 1995
  18. Wang X, Chen L, Guo Q, Chem. Eng. J., 260, 573, 2015
  19. Mukherjee S, Akshay, Samanta AN, Adv. Powder Technol., 30, 3231, 2019
  20. dos Santos TC, Bourrelly S, Llewellyn PL, Carneiro JW, Ronconi CM, Phys. Chem. Chem. Phys., 17, 11095, 2015
  21. Ahmed S, Ramli A, Yusup S, Int. J. Greenhouse Gas Control, 51, 230, 2016
  22. Belmabkhout Y, Sayari A, Adsorption, 15, 318, 2009
  23. Serna-Guerrero R, Sayari A, Chem. Eng. J., 161, 182, 2010
  24. Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 46, 446, 2007
  25. Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 45, 3248, 2006
  26. Serna-Guerrero R, Belmabkhout Y, Sayari A, Chem. Eng. J., 158, 513, 2010
  27. Xu X, Song C, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16, 1463, 2002
  28. Rao N, Wang M, Shang Z, Hou Y, Fan G, Li J, Energy Fuels, 32, 670, 2018
  29. Wang X, Zeng W, Song M, Wang F, Hu X, Guo Q, Liu Y, Chem. Eng. J., 364, 475, 2019
  30. Chen C, Xu H, Jiang Q, Lin Z, Energy, 214, 119093, 2021
  31. Yıldız MG, Davran-Candan T, Günay ME, Yıldırım R, J. CO2 Utilization, 31, 27, 2019
  32. Franchi RS, Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 44, 8007, 2005
  33. Heydari-Gorji A, Belmabkhout Y, Sayari A, Langmuir, 27, 12411, 2011
  34. Xu X, Song C, Andr?sen JM, Miller BG, Scaroni AW, Micropor. Mesopor. Mater., 62, 29, 2003
  35. Gomes VG, Yee KWK, J. Sep. Purif. Technol., 28, 161, 2002
  36. M?rel J, Clausse M, Meunier F, J. Environ. Prog. Sustain. Energy, 25, 327, 2010
  37. Riboldi L, Bolland O, Int. J. Greenhouse Gas Control, 39, 1, 2015
  38. Raganati F, Chirone R, Ammendola P, Ind. Eng. Chem. Res., 59, 3593, 2020
  39. Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P, Chem. Eng. J., 372, 526, 2019
  40. Glotov A, Vutolkina A, Pimerzin A, Nedolivko V, Zasypalov G, Stytsenko V, Karakhanov E, Vinokurov V, Catalysts, 10, 537, 2020
  41. Kang F, Wang Q, Xiang S, Mater. Lett., 59, 1426, 2005
  42. Wang G, Wang Y, Liu Y, Liu Z, Guo Y, Liu G, Yang Z, Xu M, Wang L, Appl. Clay Sci., 44, 185, 2009
  43. Du C, Yang H, J. Colloid Interface Sci., 369, 216, 2012
  44. Zhou C, Sun T, Gao Q, Alshameri A, Zhu P, Wang H, Qiu X, Ma Y, Yan C, J. Taiwan Inst. Chem. Engineers, 45, 1073, 2014
  45. Miao S, Liu Z, Ma H, Han B, Du J, Sun Z, Miao Z, Micropor. Mesopor. Mater., 83, 277, 2005
  46. Yang H, Deng Y, Du C, Jin S, Appl. Clay Sci., 47, 351, 2010
  47. Jin J, Ouyang J, Yang HM, Appl. Clay Sci., 99, 246, 2014
  48. Panek R, Wdowin M, Franus W, Czarna D, Stevens LA, Deng H, Liu J, Sun C, Liu H, Snape CE, J. CO2 Utilization, 22, 81, 2017
  49. Li CC, Qiao XC, Yu JG, Mater. Lett., 167, 246, 2016
  50. Hong GB, Ruan RT, Chang CT, Chem. Eng. J., 215-216, 472, 2013
  51. Lin LY, Bai H, Environ. Sci. Technol., 47, 4636, 2013
  52. Liou TH, Chem. Eng. J., 171, 1458, 2011
  53. Liu J, Wei X, Xue J, Su H, Mater. Chem. Phys., 241, 122355, 2020
  54. Ma Y, Chen H, Shi Y, Yuan S, Mater. Res. Bull., 77, 258, 2016
  55. Chiarakorn S, Areerob T, Grisdanurak N, Sci. Technol. Adv. Mater., 8, 110, 2007
  56. Ziaei-Azad H, Kolle JM, Al-Yasser N, Sayari A, Micropor. Mesopor. Mater., 262, 166, 2018
  57. Wang X, Ma X, Song C, Locke DR, Siefert S, Winans RE, M?llmer J, Lange M, M?ller A, Gl?ser R, Micropor. Mesopor. Mater., 169, 103, 2013
  58. Wang D, Wang X, Ma X, Fillerup E, Song C, J. Catal. Today, 233, 100, 2014
  59. Ammendola P, Raganati F, Chirone R, Miccio F, Powder Technol., 373, 446, 2020
  60. Goel C, Kaur H, Bhunia H, Bajpai PK, J. CO2 Utiliz, 16, 50, 2016
  61. Loganathan S, Tikmani M, Edubilli S, Mishra A, Chem. Eng. J., 256, 1, 2014
  62. Álvarez-Gutiérrez N, Gil MV, Rubiera F, Pevida C, Chem. Eng. J., 307, 249, 2017
  63. Hameed BH, Tan IAW, Ahmad AL, Chem. Eng. J., 144, 235, 2008
  64. Jana SK, Nishida R, Shindo K, Kugita T, Namba S, Micropor. Mesopor. Mater., 68, 133, 2004
  65. Rocha JV, Barrera D, Sapag K, Topics Catal., 54, 121, 2011
  66. Kruk M, Jaroniec M, Sayari A, Micropor. Mesopor. Mater., 35-36, 545, 2000
  67. Son WJ, Choi JS, Ahn WS, Micropor. Mesopor. Mater., 113, 31, 2008
  68. Qi G, Wang Y, Estevez L, Duan X, Anako N, Park AHA, Li W, Jones CW, Giannelis EP, Energy Environ. Sci., 4, 444, 2011
  69. Zhou C, Gao Q, Luo W, Zhou Q, Wang H, Yan C, Duan P, J. Taiwan Inst. Chem. Engineers, 52, 147, 2015
  70. Wu XW, Ma HW, Zhang LT, Wang FJ, Appl. Surf. Sci., 261, 902, 2012
  71. Wang Q, Luo J, Zhong Z, Borgna A, Energy Environ. Sci., 4, 42, 2011
  72. Sepehrian H, Ahmadi SJ, Waqif-Husain S, Faghihian H, Alighanbari H, J. Hazard. Mater., 176, 252, 2010
  73. Heydari-Gorji A, Sayari A, Chem. Eng. J., 173, 72, 2011
  74. Wang D, Wang X, Ma X, Fillerup E, Song C, Catal. Today, 233, 100, 2014
  75. Ge K, Yu Q, Chen S, Shi X, Wang J, Chem. Eng. J., 364, 328, 2019
  76. Xu X, Song C, Miller BG, Scaroni AW, Ind. Eng. Chem. Res., 44, 8113, 2005
  77. Belmabkhout Y, Serna R, Sayari A, Adsorption of CO2-Containing Gas Mixtures Over Amine-Bearing Pore-Expanded MCM-41 Silica: Application for Gas Purification (2009).
  78. Liu Q, Shi J, Zheng S, Tao M, He Y, Shi Y, Ind. Eng. Chem. Res., 53, 11677, 2014
  79. Liu Y, Yu X, Appl. Energy, 211, 1080, 2018
  80. Heydari-Gorji A, Yong Y, Sayari A, Energy Fuels, 25, 4206, 2011
  81. Tiwari D, Goel C, Bhunia H, Bajpai PK, Sep. Purif. Technol., 181, 107, 2017
  82. Conway W, Wang X, Fernandes D, Burns R, Lawrance G, Puxty G, Maeder M, J. Phys. Chem. A, 115, 14340, 2011
  83. Tlili N, Gr?villot G, Valli?res C, Int. J. Greenhouse Gas Control, 3, 519, 2009
  84. Zhang Z, Xu M, Wang H, Li Z, Chem. Eng. J., 160, 571, 2010
  85. Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM, Angew. Chem. Int. Ed. Engl., 44, 4745, 2005
  86. Millward AR, Yaghi OM, J. Am. Chem. Soc., 127, 17998, 2005
  87. Llewellyn PL, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, De Weireld G, Chang JS, Hong DY, Hwang YK, Jhung SH, Ferey G, Langmuir, 24, 7245, 2008
  88. Siriwardane RV, Shen MS, Fisher EP, Poston JA, Energy Fuels, 15, 279, 2001
  89. Raganati F, Ammendola P, Chirone R, KONA Powder Particle J., 32, 23, 2015
  90. Ammendola P, Raganati F, Chirone R, Fuel Process. Technol., 134, 494, 2015
  91. Sch?ny G, Dietrich F, Fuchs J, Pr?ll T, Hofbauer H, Powder Technol., 316, 519, 2017