Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 724-735, 2022
Influence of pore structure of granular activated carbon prepared from anthraciteon the adsorption of CO2, CH4 and N2
A series of granular activated carbon (GAC) samples with similar surface chemical properties but different pore structures were prepared from anthracite. The maximum adsorption capacities of the prepared CO2, CH4, and N2 at 298 K and 2.0MPa were 4.27mmol/g, 2.54mmol/g, and 1.46mmol/g, respectively, and the adsorption selectivity parameters, i.e., αCH4,N2 and αCO2,CH4, were 3.23 and 3.06, respectively. By using the GAC with the optimum pore size as adsorbent, the concentration of methane in the nitrogen-methane (CH4/N2) mixture was concentrated from 30% to 63.5% via a single-column single-cycle pressure swing adsorption (PSA) process. The pore size distribution of the GAC samples was dominated by micropores, with specific surface area in the range of 330-500m2/g and micropore volume in the range of 0.12-0.19 cm3/g. Although the specific surface area and pore volume of micropores played an important role in the separation performance, the pore size distribution was found to be the decisive factor. In particular, the micropores with sizes in the range of 5.0-10.0 Å were the main factor affecting the concentrating effect of CH4 or CO2 by GAC.
[References]
  1. Fan Y, Deng C, Zhang X, Li F, Wang X, Qiao L, Int. J. Greenh. Gas Control., 1, 76, 2018
  2. Doong SJ, Yang RT, AICHE J., 397, 32, 1986
  3. Gomes VG, Yee KWK, Sep. Purif. Technol., 161, 28, 2002
  4. Lozano-Castell? D, Lillo-R?denas MA, Cazorla-Amor?s D, Linares-Solano A, Carbon, 741, 39, 2001
  5. Yacob AR, Swaidan HMA, Appl. Mech. Mater., 2124, 110, 2012
  6. Buczek B, Chem. Process Eng-Inz., 385, 21, 2000
  7. Brea P, Delgado JA, ?gueda VI, Uguina MA, Sep. Purif. Technol., 61, 179, 2017
  8. Sethia G, Sayari A, Carbon, 68, 93, 2015
  9. Rehman A, Heo Y, Nazir G, Park S, Carbon, 71, 172, 2021
  10. Lee M, Park M, Kim H, Park S, Sci. Rep., 1, 6, 2016
  11. Wang L, Rao L, Xia B, Wang L, Yue L, Liang Y, Carbon, 31, 130, 2018
  12. Park J, Attia NF, Jung M, Energy, 9, 158, 2018
  13. Boyjoo Y, Cheng Y, Zhong H, Hao Y, Pan J, Pareek VK, Carbon, 490, 116, 2017
  14. Ullah R, Saad MAHS, Aparicio S, Aparicio S, Atilhan M, Micropor. Mesopor. Mater., 49, 262, 2018
  15. Vaezi MJ, Babaluo AA, Maghsoudi H, Chem. Eng. Res. Des., 347, 134, 2018
  16. Trinh TT, van Erp TS, Bedeaux D, Kjelstrup S, Grande CA, Chem. Chem. Phys., 8223, 17, 2015
  17. Arami-Niya A, Rufford TE, Zhu Z, Carbon, 115, 103, 2016
  18. Rosas JM, Ruiz-Rosas R, Rodr?guez-Mirasol J, Cordero T, Chem. Eng. J., 707, 307, 2017
  19. Gu M, Zhang B, Qi Z, Liu Z, Duan S, Du X, Sep. Purif. Technol., 213, 146, 2015
  20. Cavenati S, Grande CA, Rodrigues AE, Sep. Sci. Technol., 2721, 40, 2005
  21. Notaro F, Mulhaupt JT, Leavitt FW, Ackley MW, US Patent, 5,810,909 (1998).
  22. Rege SU, Yang RT, Sep. Sci. Technol., 3355, 36, 2001
  23. Rege SU, Yang RT, Chem. Eng. Sci., 3781, 56, 2001
  24. Habgood HW, Can. J. Chem., 1384, 36, 1958
  25. Ruthven DM, Farooq S, Knaebel KS, Pressure Swing Adsorption, Wiley-VCH (1994).
  26. Gu M, University of Chong Qing China, PhD thesis (2000).
  27. Baksh MSA, Yang RT, Chung DDL, Carbon, 931, 27, 1989
  28. Zhou L, Guo WC, Zhou TP, Chin. J. Chem. Eng., 558, 10, 2002
  29. Ruan H, University of Tian Jin China, PhD thesis (2010).
  30. Foeth F, Andersson M, Bosch H, Aly G, Reith T, Sep. Sci. Technol., 93, 29, 1994
  31. Jasra RV, Choudry NV, Bhat SGT, Sci. Technol., 885, 26, 1991
  32. Ruthven DM, Principles of adsorption and adsorption processes, John Wiley & Sons Publications, New York (1984).
  33. Cui XJ, Bustin RM, Dipple G, Fuel, 293, 83, 2004
  34. Kluson P, Scaife S, Quirke N, Sep. Sci. Technol., 15, 20, 2000
  35. Zhao GF, Bai P, Zhu HM, Yan RX, Liu XM, Yan ZF, Asia-Pac. J. Chem. Eng., 284, 3, 2008