Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 695-705, 2022
Oxygen absorption and desorption properties of YBaCo4O7+?monolithic oxygen carrier in the fixed-bed reactor
The technology of chemical looping air separation, with the characteristics of simple operation, low cost, and low energy consumption, separates oxygen from air with the oxygen carrier. In this work, reaction properties of monolithic oxygen carriers were investigated in a fixed-bed apparatus, with the consideration of the reactor temperature, oxygen concentration, and reaction gas flow. The XRD results showed that active phase, Al2O3, and cordierite cannot react with each other in calcination processing. The SEM results showed that the micromorphology of oxygen carrier was loaded on cordierite honeycomb uniformly with sphere or sphere-like particles. Oxygen carriers show a faster oxygen release rate and a slower oxygen intake rate. With increasing of absorption temperature, oxygen concentration of inlet gas, and desorption temperature, the reaction rate per unit mass increases. With increasing of gas flow rate, the reaction rate per unit mass decreases. The maximum value of the reaction rate per unit mass was obtained by Y0.95Ti0.05BaCo4O7+α monolith sample. Samples substituted with Dy element showed fine performance of stability, as Dy substitution causes more serious local lattice distortions.
[References]
  1. Moghtaderi B, Energy Fuels, 24(1), 190, 2010
  2. Song H, Shah K, Doroodchi E, Moghtaderi B, Energy Fuels, 28(1), 163, 2014
  3. DE Diego LF, Gac?a-labiano F, Ad?neza J, Gay?n P, Abad A, Corbella BM, Palacios JM, Fuel, 83(13), 17490, 2004
  4. Son N, Do JY, Park N, Kim US, Baek J, Lee D, Ryu H, Kang M, Korean J. Chem. Eng., 36(12), 1971, 2019
  5. Ge HJ, Shen LH, Feng F, Jiang SX, Appl. Therm. Eng., 85, 52, 2015
  6. Gao Y, Xiao J, Ye JD, Shen YT, Korean J. Chem. Eng., 37(1), 54, 2020
  7. Mattisson T, Lyngfelt A, Leion H, nt. J. Greenhouse Gas Control., 3(1), 11, 2009
  8. Siriwardane R, Tian HJ, Richards G, Simonyi T, James P, Energy Fuels, 23(8), 3885, 2009
  9. Tian H, Guo Q, Chem. Eng. Res. Des., 89(9), 1524, 2011
  10. Ryd?n M, Lyngfelt A, Mattisson T, Chen D, Holmen A, Bjorgum E, Int. J. Greenhouse Gas Control, 2(1), 21, 2008
  11. Nalbandian L, Evdou A, Zaspalis V, Int. J. Hydrogen Energ., 36(11), 6657, 2011
  12. Li BY, Zhang W, Qian YQ, Wang ZY, Korean J. Chem. Eng., 37(4), 688, 2020
  13. Gwak YR, Yun JH, Keel SI, Lee SH, Korean J. Chem. Eng., 37(11), 1878, 2020
  14. Mattisson T, Lyngfelt A, Leion H, Int. J. Greenhouse Gas Control, 3(1), 11, 2009
  15. Arjmand M, Azad A, Leion H, Lyngfelt A, Mattisson T, Energy Fuels, 25(11), 5493, 2011
  16. Nagai Y, Yamamoto T, Tanaka T, Yoshida S, Nonaka T, Okamoto T, Suda A, Sugiura M, Catal. Today, 74(3-4), 225, 2007
  17. Kaspar J, Fornasiero P, J. Solid State Chem., 171(1-2), 19, 2003
  18. Karppinen M, Yanauchi H, Otani S, Chem. Mater., 18(2), 490, 2006
  19. Kadota S, Kappinen M, Motohashi T, Yamauchi H, Chem. Mater., 20(20), 6378, 2008
  20. Wang S, Hao HS, Zhu BF, Jia JF, Hu X, J. Mater. Sci., 43(15), 5385, 2008
  21. Zhang SM, MA Dissertation, ZhengZhou University (2011).
  22. Guo LJ, MA Dissertation, ZhengZhou University (2005).
  23. Kozeeva LP, Kameneva MY, Lavrov AN, Podberezskaya NV, Inorg. Mater., 49(6), 626, 2013
  24. Parkkima O, Yamauchi H, Karppinen M, Chem. Mater., 25(4), 599, 2013
  25. Valldor M, Solid State Sci., 7(10), 1163, 2005
  26. Hou LM, Yu QB, Wang K, Wang T, Yang F, Zhang S, J. Therm. Anal. Calorim., 49(1), 317, 2019
  27. Hou LM, Yu QB, Wang K, Zhang S, Qin Q, Yang F, Korean J. Chem. Eng., 36(1), 84, 2019
  28. Qi AD, Wang SD, Fu GZ, Ni CJ, Wu DY, Appl. Catal. A: Gen., 281(1-2), 233, 2005
  29. Shi BB, Jiang ZD, Nat. Gas Chem. Ind., 38(3), 11, 2013
  30. Wang, MA Diss K, Shanghai Jiaotong University (2009).
  31. Cimino S, Lisi L, Pirone R, Russo G, Turco M, Catal. Today, 59(1), 19, 2000
  32. Wang K, Yu QB, Qin Q, Zuo ZL, Wu TW, Chem. Eng. J., 287, 292, 2016
  33. Liu Q, Shi JJ, Zheng SD, Tao MN, He Y, Shi Y, Ind. Eng. Chem. Res., 53(29), 11677, 2014
  34. Hou LM, Yu QB, Wang T, Wang K, Qin Q, Qi ZF, Korean J. Chem. Eng., 35(3), 626, 2018
  35. Yaremchenko AA, Patrakeev MV, Kharton VV, Marques FMB, Leonidov IA, Kozhevnikov VL, Solid State Sci., 6(4), 357, 2004