Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 684-694, 2022
Cellulose-type binder enabling CuCl2 supported on nanoporous bayeriteto have high CO adsorption ability via reduction of Cu2+ to Cu+
Previously, we developed a powder-form nanoporous CO-selective adsorbent synthesized via thermal monolayer dispersion of CuCl on bayerite, showing high CO adsorption capacity (48.5 cm3g-1) and a high CO/CO2 selectivity (12.4). For its industrial applications, it is necessary to pelletize it, avoiding pressure-drop problems. Here, we demonstrate a facile three-step method of pelletizing a CuCl/bayerite: 1) physical mixing of CuCl, methyl-cellulose, inorganic-binder, and bayerite, 2) pelletizing, and 3) thermal treatment at 573 K under vacuum. The pelletized adsorbent shows high CO adsorption capacity (42 cm3g-1), CO/CO2 selectivity (12), and commercial-level mechanical strength (1.3 kgf). Notably, the added methyl-cellulose binder has reducing role that maintains the initial CO adsorption capacity for 100 days’ exposure to humid air-condition, although CuCl-based adsorbent easily lost CO adsorption ability owing to oxidation of Cu+ to Cu2+. CuCl2, showing no specific interaction with CO, was converted to Cu+ by the methyl-cellulose. Thus, adsorbent prepared using CuCl2 instead of CuCl with the methyl-cellulose also showed high CO adsorption capacity (31.6 cm3 g-1) and maintained the initial capacity after seven days’ exposure. The reducing role of the methyl-cellulose binder allows inexpensive and feasible synthesis of the CO-adsorbent using CuCl2 that can be easily dispersed on bayerite, without additional reduction treatment.
[References]
  1. Mahajan S, Jagtap S, Mater. Today, 18, 100483, 2020
  2. ding Y, Alpay E, Chem. Eng. Sci., 55, 3929, 2000
  3. Slagtern A, Olsbye U, Appl. Catal., 110, 99, 1994
  4. Bhat SA, Sadhukhan J, AIChE J., 55, 408, 2009
  5. Hou SS, Chen CH, Chang CY, Wu CW, Ou JJ, Lin TH, Energy Convers. Manage., 52, 2758, 2011
  6. Zarca G, Ortiz I, Urtiaga A, J. Membr. Sci., 438, 38, 2013
  7. Wang Y, Li C, Meng F, Lv S, Guo J, Liu X, Wang C, Ma Z, Chem. Sci. Eng., 8, 340, 2014
  8. Dutta N, Patil G, Sep. Purif., 9, 277, 1995
  9. Tamon H, Kitamura K, Okazaki M, AIChE J., 42, 422, 1996
  10. Patil G, Baruah S, Dutta N, Gas Sep. Purif., 5, 2, 1991
  11. Soave GS, Gamba S, Pellegrini LA, Ind. Eng. Chem. Res., 45, 5761, 2006
  12. Kasuya F, Tsuji T, Gas Sep. Purif., 5, 242, 1991
  13. Xue C, Hao W, Cheng W, Ma J, Li R, Chem. Eng. J., 375, 122049, 2019
  14. Peng J, Xian S, Xiao J, Huang Y, Xia Q, Wang H, Li Z, Chem. Eng. J., 270, 282, 2015
  15. Khan NA, Jhung SH, J. Hazard. Mater., 325, 198, 2017
  16. Yoon JW, Yoon TU, Kim EJ, Kim AR, Jung TS, Han SS, Bae YS, J. Hazard. Mater., 341, 321, 2018
  17. Le VN, Vo TK, Lee JH, Kim JC, Kim TH, Oh KH, Bae YS, Kwak SK, Kim J, Chem. Eng. J., 404, 126492, 2021
  18. Yoon TU, Kim MJ, Kim AR, Kang JH, Ji D, Bae YS, J. Ind. Eng. Chem., 87, 102, 2020
  19. Vo TK, Bae YS, Chang BJ, Moon SY, Kim JH, Kim J, Micropor. Mesopor. Mater., 274, 17, 2019
  20. Xie Y, Zhang J, Qiu J, Tong X, Fu J, Yang G, Yan H, Tang Y, Adsorption, 3, 27, 1997
  21. Cho K, Kim J, Beum HT, Jung T, Han SS, J. Hazard. Mater., 344, 857, 2018
  22. Cho K, Kim J, Park JH, Jung T, Beum HT, Cho DW, Rhee YW, Han SS, Micropor. Mesopor. Mater., 277, 124, 2019
  23. Saha D, Deng S, J. Chem. Eng. Data, 54, 2245, 2009
  24. Hirai H, Wada K, Komiyama M, Bull. Chem. Soc. Jpn., 59, 2217, 1986
  25. Gallaba DH, Villarroel-Rocha J, Sapag K, Migone AD, Micropor. Mesopor. Mater., 265, 227, 2018
  26. Wang Y, Yang RT, Heinzel JM, Chem. Eng. Sci., 63, 356, 2008
  27. Huang Y, Tao Y, He L, Duan Y, Xiao J, Li Z, Adsorption, 21, 373, 2015
  28. Wang Y, Lin Y, J. Sol-Gel Sci. Technol., 11, 185, 1998
  29. Yin Y, Tan P, Liu XQ, Zhu J, Sun LB, J. Mater. Chem. A, 2, 3399, 2014
  30. Hadjiivanov K, Kn?zinger H, Phys. Chem. Chem. Phys., 3, 1132, 2001
  31. Huang KH, J. Mol. Catal., 64, 85, 1991
  32. Hadjiivanov KI, Kantcheva MM, Klissurski DG, J. Chem., 92, 4595, 1996
  33. Jin M, Kim SS, Kim YD, Park JN, Kim JH, Ko CH, Kim JN, Kim JM, J. Mater., 1, 6653, 2013
  34. Xue J, Ceylan S, Goldfarb JL, Thermochim. Acta, 618, 36, 2015
  35. Akram M, Taha I, Ghobashy MM, Cellulose, 23, 1713, 2016
  36. Aggarwal P, Dollimore D, Talanta, 43, 1527, 1996
  37. Wu Z, Wang S, Zhao J, Chen L, Meng H, Fuel, 171, 65, 2016
  38. Wooten JB, Seeman JI, Hajaligol MR, Energy Fuels, 18, 1, 2004
  39. Mok WSL, Antal MJ, Thermochim. Acta, 68, 165, 1983
  40. Collard FX, Blin J, Renewable Sustainable Energy Rev., 38, 594, 2014
  41. Zhang C, Chao L, Zhang Z, Zhang L, Li Q, Fan H, Zhang S, Liu Q, Qiao Y, Tian Y, Wang Y, Hu X, Renewable Sustainable Energy Rev., 135, 110416, 2021
  42. Xin S, Yang H, Chen Y, Yang M, Chen L, Wang X, Chen H, J. Anal. Appl. Pyrolysis, 116, 263, 2015
  43. Yang Z, Liu X, Yang Z, Zhuang G, Bai Z, Zhang H, Guo Y, J. Anal. Appl. Pyrolysis, 102, 83, 2013
  44. Yang H, Yan R, Chen H, Lee DH, Zheng C, Fuel, 86, 1781, 2007
  45. Yang X, Zhao Y, Li R, Wu Y, Yang M, Thermochim. Acta, 665, 20, 2018
  46. Wu Y, Chen Z, Li B, Xing J, Liu H, Tong Y, Tian P, Xu Y, Liu Z, J. Energy, 36, 122, 2019
  47. Gao F, Wang Y, S. Chem. Eng. J., 290, 418, 2016
  48. Kim AR, Yoon TU, Kim SI, Cho K, Han SS, Bae YS, Chem. Eng. J., 348, 135, 2018
  49. Xue C, Hao W, Cheng W, Ma J, Li R, Materials, 12, 1605, 2019
  50. Jim?nez JA, J. Alloys Compd., 656, 685, 2016
  51. Klupfel L, Keiluweit M, Kleber M, Sander M, Environ. Sci. Technol., 48, 5601, 2014
  52. Hwang EH, Seong HG, Kim SJ, Korean J. Met. Mater., 56, 570, 2018