Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 638-645, 2022
Preparation of chromium fumarate metal-organic frameworks for removal of pharmaceutical compounds from water
Pharmaceutical pollution in water is the major cause of antibiotic resistance, so remediation of water from pharmaceuticals is a very important issue. Different methods are used for this purpose, with adsorption as one of the most preferred. Different adsorbents have been used for water treatment processes. Metal-organic frameworks that have highly porous structures have gained attention in the last decades. In this study, novel chromium fumarate (Cr-Fum) was prepared, and the efficiency of Cr-Fum was tested by ciprofloxacin (CPX) adsorption. Cr-Fum was prepared under reflux and characterized by scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA), and differential scanning calorimetry (DSC). The general approach of the process was monolayer adsorption at low temperature and heterogeneous adsorption at high temperature. 2.5mg of adsorbent was adsorbed 4.97mg/g and 11.47% of CPX. 10mg of Cr-Fum was adsorbed 0.82mg/g and 7.27% of CPX. Partition coefficients were calculated and 0.07mg/g/M was found at 298 K. The reaction followed pseudo-first- and pseudo-second-order kinetic models. Thermodynamic analysis showed that the reaction is spontaneous and exothermic. Additional ions caused decreasing CPX adsorption, but this study showed that Cr-Fum has NaCl adsorption capacity. In future studies, NaCl adsorption should be investigated. Desorption studies were applied to Cr-Fum after the adsorption processes. 0.1M NaOH and phosphate buffer (pH=7.4) solution were used as desorption eluents. The desorption period was chosen as 6 h. NaOH solution desorbed 67.38% of CPX at first cycle and buffer solution desorbed 26.87% of CPX at second cycle.
[References]
  1. K?mmerer K, Chemosphere, 45, 957, 2001
  2. K?mmerer K, Sustain. Chem. Pharm., 12, 100136, 2019
  3. Mondal SK, Saha AK, Sinha A, J. Clean. Prod., 171, 1203, 2018
  4. Li W, Wang W, Dou J, Gao J, Chen S, Quan X, Zhao H, J. Water Process Eng., 9, e14, 2016
  5. Khan GJ, Khan RA, Majeed I, Siddiqui FA, Khan S, Prof. Med. J., 22, 1, 2015
  6. Gordeeva LG, Tu YD, Pan Q, Palash ML, Saha BB, Aristov YI, Wang RZ, Nano Energy, 84, 105946, 2021
  7. Chalati T, Horcajada P, Gref R, Couvreur P, Serre C, J. Mater. Chem., 21, 2220, 2011
  8. Zahn G, Zerner P, Lippke J, Kempf FL, Lilienthal S, Schr?der CA, Schneider AM, Behrens P, CrystEngComm, 16, 9198, 2014
  9. Zhang Y, Lucier BEG, McKenzie SM, Arhangelskis M, Morris AJ, Friscic T, Reid JW, Terskikh VV, Chen M, Huang Y, ACS Appl. Mater. Interfaces, 10, 28582, 2018
  10. A. Jeyaseelan, M. Naushad and N. Viswanathan, J. Chem. Eng. Data, 65, 2990, 2020
  11. Igwegbe CA, Oba SN, Aniagor CO, Adeniyi AG, Ighalo JO, J. Ind. Eng. Chem., 93, 57, 2021
  12. Ngeno EC, Orata F, Baraza LD, Shikuku VO, Kimosop SJ, J. Chem. Chem. Eng., 10, 185, 2016
  13. Dhiman N, Sharma N, Indian Chem. Eng., 61, 67, 2019
  14. Wu ZP, Wang MX, Zhou LJ, Yin ZL, Tan J, Zhang JL, Chen QY, Trans. Nonferrous Met. Soc. China (English Ed.), 24, 3722, 2014
  15. Heravi MM, Ghavidel M, Mohammadkhani L, RSC Adv., 8, 27832, 2018
  16. Bozbiyik B, Lannoeye J, De Vos DE, Baron GV, Denayer JFM, Phys. Chem. Chem. Phys., 18, 3294, 2016
  17. Teo HWB, Chakraborty A, Kitagawa Y, Kayal S, Int. J. Heat Mass Transf., 114, 621, 2017
  18. Sun Y, Li H, Li G, Gao B, Yue Q, Li X, Bioresour. Technol., 217, 239, 2016
  19. Xie Z, Dai J, Chen X, He J, Chang Z, Yan Y, Li C, RSC Adv., 6, 72985, 2016
  20. Karmakar S, Dechnik J, Janiak C, De S, J. Hazard. Mater., 303, 10, 2016
  21. Azhdari R, Mousavi SM, Hashemi SA, Bahrani S, Ramakrishna S, J. Environ. Chem. Eng., 7, 103437, 2019
  22. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, F?rey G, Couvreur P, Gref R, Nat. Mater., 9, 172, 2010
  23. Gargiulo V, Alf? M, Raganati F, Lisi L, Chirone R, Ammendola P, Fuel, 222, 319, 2018
  24. Jonas V, Thiel W, J. Chem. Phys., 102, 8474, 1995
  25. Nakamoto K, Infrared and raman spectra of inorganic and coordination compounds, in: Ed. by Griffiths PR, Handb. Vib. Spectrosc., John Wiley & Sons, Ltd, Chichester, UK (2006).
  26. Zhang F, Jiang D, Zhang X, Nano-Structures and Nano-Objects, 5, 1, 2016
  27. Petrou AL, Thoma V, Tampouris K, Bioinorg. Chem. Appl., 2010, 2010
  28. Lagergren S, K. Sven. Vetenskademiens Handl., 24, 1, 1898
  29. Ho YS, J. Hazard. Mater., 136, 681, 2006
  30. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  31. Freundlich H, Zeitschrift Fur Phys. Chemie, 57, 385, 1906
  32. Jnr MH, Spiff AI, Electron. J. Biotechnol., 8, 717, 2005
  33. Na CJ, Yoo MJ, Tsang DCW, Kim HW, Kim KH, J. Hazard. Mater., 366, 452, 2019
  34. Szulejko JE, Kim KH, Parise J, Sep. Purif. Technol., 212, 980, 2019
  35. Anastopoulos I, Kyzas GZ, J. Mol. Liq., 218, 174, 2016
  36. Li H, Zhang D, Han X, Xing B, Chemosphere, 95, 150, 2014
  37. Gupta VK, Rastogi A, J. Hazard. Mater., 154, 347, 2008
  38. Goldberg I, Rokem, JS Organic and fatty acid production, microbial, in: Encycl. Microbiol., Elsevier Inc., Amsterdam (2009).