Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 596-604, 2022
A RuO2IrO2 electrocatalyst with an optimal composition and novelmicrostructure for oxygen evolving in the single cell
A highly active RuO2IrO2 electrocatalyst was developed via dip-coating/calcination method for oxygen evolution reaction (OER). The catalyst on Ti substrate with a 7/3 molar ratio between Ru and Ir showed the highest electrocatalytic activity for OER among composite samples in different molar ratios. Moreover, the properties of RuO2IrO2 grown on carbon paper were evaluated by proton exchange membrane water electrolysis single cell. Compared with the micron-particle structure of RuO2IrO2 catalyst on the Ti substrate, the catalyst grown on the carbon paper showed a novel nano dendrite shape and can be used directly as the gas diffusion electrode. Owing to the large surface area of the catalyst, the nano dendrite-shaped RuO2IrO2 catalyst exhibits excellent OER performance in the single cell. Furthermore, a cell voltage of 2.50 V is achieved under 200mA cm-2 at 30°C by using the optimal composition RuO2IrO2(Ru : Ir=7/3) and the commercial 20% Pt/C as anode and cathode, respectively.
[References]
  1. Kim H, Park H, Bang H, Kim SK, Korean J. Chem. Eng., 37, 1275, 2020
  2. Wang M, Chen M, Yang Z, Liu C, Lee JK, Yang W, Wang X, Energy Convers. Manage., 191, 132, 2019
  3. Kim H, Kim J, Han GH, Jang HW, Kim SY, Ahn SH, Korean J. Chem. Eng., 37, 1340, 2020
  4. Brightman E, Dodwell J, Dijk NV, Hinds G, Electrochem. Commun., 52, 1, 2015
  5. Rosestolato D, Fregoni J, Ferro S, de Battisti A, Electrochim. Acta, 139, 180, 2014
  6. Beer HB, British Patent 1,147,442 (1969).
  7. Vercesi GP, Rolewicz J, Comninellis C, Thermochim. Acta, 176, 31, 1991
  8. Aleksandar RZ, Edgar V, Justus M, Wolfgang S, J. Electroanal. Chem., 828, 63, 2018
  9. Ye F, Li J, Wang X, Wang T, Li S, Wei H, Li Q, Christensen E, Int. J. Hydrogen Energy, 35, 8049, 2010
  10. Hunter BM, Gray HB, Muller AM, Chem. Rev., 116, 14120, 2016
  11. Lee Y, Suntivich J, May KJ, Perry EE, Shaohorn Y, J. Phys. Chem. Lett., 3, 399, 2012
  12. Lodi G, Sivieri E, Battisti A, Trasatti S, J. Appl. Electrochem., 8, 135, 1978
  13. Xu W, Haarberg GM, Seland F, Sunde S, Ratvik AP, Holmin S, Gustavsson J, Afvander A, Zimmerman E, Akre T, Corr. Sci.,, 150, 76, 2019
  14. Chun D, Lim CR, Lee HS, Yoon WS, Lee TK, Kim DK, J. Water Process Eng., 26, 1, 2018
  15. Marshall A, B��rresen B, Hagen G, Tsypkin M, Tunold R, Electrochim. Acta, 51, 3161, 2006
  16. Marshall AT, Sunde S, Tsypkin M, Tunold R, Int. J. Hydrogen Energy, 32, 2320, 2007
  17. Ye F, Hu W, Liu H, Liu J, Li J, Wang X, Yang J, Asia-Pac J. Chem. Eng., 8, 271, 2013
  18. Lee J, Jeong B, Ocon JD, Curr. Appl. Phys., 13, 309, 2013
  19. Liu G, Yang Z, Halim M, Li X, Wang M, Kim JY, Mei Q, Wang X, Lee JK, Energy Convers. Manage., 138, 54, 2017
  20. Negishi N, Matsuzawa S, Takeuchi K, Pichat P, Chem. Mater., 19(15), 3808, 2007
  21. McClune WF, Powder diffraction file alphabetical index inorganic phase, JCPDS, Swarthmore, PA (1980).
  22. Mazhari H, Jafarzadeh K, Mirali SM, J. Electroanal. Chem., 777, 67, 2016
  23. Olivera-Sousa A, Silva MAS, Machado SAS, Avaca LA, Lima-Neto P, Electrochim. Acta, 45(27), 4467, 2000
  24. Angelineta C, Trasatti S, Atanasoska LD, Atanasoski RT, J. Electroanal. Chem., 214(1-2), 535, 1986
  25. Terezo AJ, Pereira EC, Electrochim. Acta, 44(25), 4507, 1999
  26. Da Silva LA, Alves VA, Trasatti S, Boodts JFC, J. Electroanal. Chem., 427(1-2), 97, 1997
  27. Kong FD, Sheng Z, Yin GP, Jing L, Xu ZQ, Int. J. Hydrogen Energy, 38, 9217, 2013
  28. Liu F, Sun X, Chen X, Li C, Yu J, Polymers, 11(4), 629, 2019
  29. Cai C, Han S, Tang Y, Sustain. Energy Fuels, 4, 2462, 2020
  30. Ahmed J, Mao Y, Electrochim. Acta, 212, 686, 2016
  31. Li G, Li S, Ge J, Liu C, Wei X, J. Mater. Chem. A, 5, 17221, 2017
  32. Wang ZM, Liu P, Cao YP, Ye F, Du XZ, Int. J. Energy Res., 45, 5841, 2020
  33. Hu J, Fu Y, Yang P, Guo L, Ye S, Ren X, He C, Zhang Q, Liu J, Mater. Charact., 177, 111201, 2021
  34. Lee SW, Baik C, Pak C, Catal. Today, 358, 203, 2019
  35. Pi Y, Shao Q, Wang P, Lv F, Gu S, Guo J, Huang X, Angew. Chem., 56, 4502, 2017
  36. Tahira A, Ibupoto ZH, Vagin M, Aftab U, Abro MI, Willander M, Nur O, Catal. Sci. Technol., 9, 2879, 2019
  37. Wang C, Jin L, Shang H, Xu H, Du Y, Chin. Chem. Lett., 32, 2108, 2020
  38. Fan Y, Zhang X, Zhang Y, Xie X, Lu S, J. Colloid Interface Sci., 604, 508, 2021
  39. Shan J, Guo C, Zhu Y, Chen S, Song L, Jaroniec M, Zheng Y, Qiao SZ, Chem, 5, 445, 2019
  40. Tian Y, Wang S, Velasco E, Yang Y, O LC, Zhang L, Li X, Lin Y, Zhang Q, Chen L, Science, 23, 100756, 2020
  41. Kundu MK, Mishra R, Bhowmik T, Kanrar S, Barman S, Int. J. Hydrogen Energy, 45, 6036, 2020
  42. Zhang Y, Ma Q, Feng K, Guo J, Lin T, Ceram. Int., 46, 17640, 2020