Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 586-595, 2022
Effects of catalyst preparation methods on the performance of La2MMnO6 (M=Co, Ni)double perovskites in catalytic combustion of propane
La2MMnO6 (M=Co, Ni) dual perovskite oxides were synthesized by sol-gel and gel-combustion methods and tested for the total oxidation of propane. The synthesized catalysts were characterized by TPR, XRD, ICP, SEM, TEM, H2-TPR and O2-TPD techniques. The preparation method had a significant effect on the physicochemical properties of samples. The XRD spectra resulting from the synthesized samples revealed the formation of single-phase perovskite structure. The largest BET specific surface area related to the La2NiMnO6 perovskite synthesized by the gelcombustion method was obtained as 35m2g-1 after calcination at 500℃. Based on the findings, the catalysts synthesized by the gel-combustion method showed an increase in specific surface area, oxygen capacity, reducibility and oxygen mobility compared to those synthesized by the sol-gel method. Accordingly, these catalysts revealed a better performance. The acquired results also showed that the presence of Ni improved the catalytic activity compared to Co. The La2NiMnO6 perovskite synthesized by the gel-combustion method with the T90 equal to 415℃ was found to be the most active catalyst, while the La2CoMnO6 double perovskite synthesized by the sol-gel method with the T90 equal to 474℃ demonstrated the lowest activity.
[References]
  1. Wang LK, Pereira NC, Hung YT, Air pollution control engineering, Springer (2004).
  2. Huang Y, Ho SSH, Lu Y, Niu R, Xu L, Cao J, Lee S, Molecules, 21, 56, 2016
  3. Suib SL, New and future developments in catalysis: Catalysis for remediation and environmental concerns, Newnes (2013).
  4. Kamal MS, Razzak SA, Hossain MM, Atmos. Environ., 140, 117, 2016
  5. Li WB, Chu WB, Zhuang M, Hua J, Catal. Today, 93-95, 205, 2004
  6. Li WB, Wang JX, Gong H, Catal. Today, 148, 81, 2009
  7. Ojala S, Koivikko N, Laitinen T, Mouammine A, Seelam PK, Laassiri S, Ainassaari K, Brahmi R, Keiski RL, Catalysts, 5, 1092, 2015
  8. Sinquin G, Petit C, Hindermann JP, Kiennemann A, Catal. Today, 70, 183, 2001
  9. Stege WP, Cad?s LE, Barbero BP, Catal. Today, 172, 53, 2011
  10. Esmaeilnejad-Ahranjani P, Khodadadi A, Ziaei-Azad H, Mortazavi Y, Chem. Eng. J., 169, 282, 2011
  11. Liang D, Huang H, Liu JL, Wang HL, Inorg. Chem. Commun., 127, 108533, 2021
  12. Spinicci R, Delmastro A, Ronchetti S, Tofanari A, Mater. Chem. Phys., 78, 393, 2003
  13. Zheng J, Lang X, Wang C, ACES, 4, 367, 2014
  14. Wu Y, Chu B, Zhang M, Yi Y, Dong L, Fan M, Jin G, Zhang L, Li B, Appl. Surf. Sci., 481, 1277, 2019
  15. Ferri D, Forni L, Appl. Catal. B: Environ., 16, 119, 1998
  16. Tan X, Han N, Chen H, Su L, Zhang C, Li Y, Ceram. Int., 47, 8762, 2021
  17. Labhsetwar NK, Watanabe A, Biniwale RB, Kumar R, Mitsuhashi T, Appl. Catal. B: Environ., 33, 165, 2001
  18. Chen DL, Pan KL, Chang MB, J. Environ. Sci., 56, 131, 2017
  19. Yoon S, Maegli AE, Karvonen L, Matam SK, Shkabko A, Riegg S, Gro��mann T, Ebbinghaus SG, Pokrant S, Weidenkaff A, J. Solid State Chem., 206, 226, 2013
  20. de Santana Santos M, Frety R, Lisi L, Cimino S, Brand?o ST, Fuel, 292, 120187, 2021
  21. Wu Y, Liu H, Li G, Jin L, Li X, Ou X, Dong L, Jin G, Li B, Appl. Surf. Sci., 508, 145158, 2020
  22. Gallagher PK, Johnson DW, Vogel EM, Schrey F, Mater. Res. Bull., 10, 623, 1975
  23. Tuza PV, Souza MMVM, Catal. Lett., 146, 47, 2016
  24. Popescu I, Wu Y, Granger P, Marcu IC, Appl. Catal. A: Gen., 485, 20, 2014
  25. Onrubia-Calvo JA, Pereda-Ayo B, De-La-Torre U, Gonz?lez-Velasco JR, Appl. Catal. B: Environ., 213, 198, 2017
  26. Tasca JE, Lavat AE, Gonz?lez MG, J. Asian Ceram. Soc., 5, 235, 2017
  27. Pan KL, Pan GT, Chong S, Chang MB, J. Environ. Sci., 69, 205, 2018
  28. Wei Y, Ni L, Li M, Zhao J, Catal. Commun., 155, 106314, 2021
  29. Gabra SG, Marek EJ, Poulston S, Williams G, Dennis JS, Appl. Catal. B: Environ., 286, 119821, 2021
  30. Chen X, Carabineiro SAC, Tavares PB, ?rf?o JJM, Pereira MFR, Figueiredo JL, J. Environ. Chem. Eng., 2, 344, 2014
  31. Li C, Liu B, He Y, Lv C, He H, Xu Y, J. Alloys Compd., 590, 541, 2014
  32. Miniajluk N, Trawczy?ski J, Zawadzki M, Tylus W, AMPC, 8, 193, 2018
  33. Wu Y, Li G, Chu B, Dong L, Tong Z, He H, Zhang L, Fan M, Li B, Dong L, Ind. Eng. Chem. Res., 57, 15670, 2018
  34. Maghsoodi S, Towfighi J, Khodadadi A, Mortazavi Y, Chem. Eng. J., 215-216, 827, 2013
  35. Liang H, Hong Y, Zhu C, Li S, Chen Y, Liu Z, Ye D, Catal. Today, 201, 98, 2013
  36. Zhu CQ, Liang H, Li SH, Hong YX, Ye D, Chin. J. Inorg. Chem., 27, 1093, 2011
  37. Parvizi N, Rahemi N, Allahyari S, Tasbihi M, J. Ind. Eng. Chem., 84, 167, 2020
  38. Touahra F, Rabahi A, Chebout R, Boudjemaa A, Lerari D, Sehailia M, Halliche D, Bachari K, Int. J. Hydrogen Energy, 41, 2477, 2016
  39. Pecchi G, Campos C, Pe?a O, Cadus LE, J. Mol. Catal. A: Chem., 282, 158, 2008
  40. Lavat AE, Baran EJ, J. Alloys Compd., 460, 152, 2008
  41. Lima SM, Assaf JM, Pe?a MA, Fierro JLG, Appl. Catal. A: Gen., 311, 94, 2006
  42. Lavat AE, Baran EJ, Vib. Spectrosc., 32, 167, 2003
  43. Kucharczyk B, Adamska K, Tylus W, Mi?ta W, Szczygie�� B, Winiarski J, Catal. Lett., 149, 1919, 2019