Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 576-585, 2022
Reactive force-field simulation of the effect of heating rate on pyrolysis behavior of lignite
With the help of ReaxFF-MD simulations, the non-isothermal pyrolysis behavior of lignite, especially the effect of heating rate on pyrolysis products, has been investigated in detail. The results demonstrate that increasing the heating rate is very helpful for the production of tar at lower heating rates. By contrast, at relatively high heating rates, further increasing the heating rate has less effect on the distribution of pyrolysis products. Moreover, the evolution tendencies of char and tar at lower heating rates are different from those at the relatively higher heating rates, which exist as remarkable turning points in the high temperature region. This is probably because the reaction time is longer at lower heating rates, and the possibilities of condensation and further decomposition of tar are much greater at high temperatures. Additionally, the relationship between system energy and reaction mechanism was revealed. The results indicate that with the same reaction mechanism, the system energies of non-isothermal pyrolysis are approximately equal and hardly affected by the heating rate. Finally, taking 2 K/ps as an example, the secondary reaction mechanism of tar was further analyzed, and some possible secondary reaction pathways were proposed.
[References]
  1. Xin HH, Wang H, Kang WJ, Di CC, Qi XY, Zhong XX, Wang DM, Liu FM, Fuel, 259, 116226, 2020
  2. Yang YM, Liu JZ, He X, Wang ZH, Zhou JH, Cen KF, Korean J. Chem. Eng., 34, 1250, 2017
  3. Ding L, Zhou ZJ, Dai ZH, Yu GS, Appl. Energy, 155, 660, 2015
  4. Liu P, Zhang DX, Wang LL, Zhou Y, Pan TY, Lu XL, Appl. Energy, 163, 254, 2016
  5. Liu SC, Zhao HY, Liu XY, Li YH, Zhao GF, Wang YG, Zeng M, Fuel, 279, 118485, 2020
  6. Zhu LL, Zhong ZP, Korean J. Chem. Eng., 37, 10, 2020
  7. Niu ZY, Liu GJ, Yin H, Zhou CC, Wu D, Yousaf B, Wang CM, Energy Convers. Manag., 124, 180, 2016
  8. Ye CP, Huang HJ, Li XH, Li WY, Feng J, Fuel, 207, 85, 2017
  9. Yu WH, Han S, Lei ZP, Zhang K, Yan JC, Li ZK, Shui HF, Kang SG, Wang ZC, Ren SB, Pan CX, Fuel, 244, 22, 2019
  10. Lin XC, Wang CH, Ideta K, Miyawaki J, Nishiyama Y, Wang YG, Yoon S, Mochida I, Fuel, 118, 257, 2014
  11. Zhan JH, Wu RC, Liu XX, Gao SQ, Xu GW, Fuel, 134, 283, 2014
  12. Li XX, Mo Z, Liu J, Guo L, Mol. Simul., 41, 13, 2015
  13. Zhao L, Gao JS, Xu CM, Petrol. Sci. Technol., 24, 1395, 2006
  14. Li GY, Ding JX, Zhang H, Hou CX, Wang F, Li YY, Liang YH, Fuel, 154, 243, 2015
  15. Zheng M, Li XX, Wang MJ, Guo L, Fuel, 253, 910, 2019
  16. Liang YH, Wang F, Zhang H, Wang JP, Li YY, Li CY, Fuel Process. Technol., 147, 1, 2016
  17. Liu Q, Liu SX, Lv YD, Hu P, Huang YJ, Kong MQ, Li GX, Fuel, 287, 119484, 2021
  18. Chen B, Diao ZJ, Lu HY, Fuel, 116, 7, 2014
  19. Zheng M, Li XX, Nie FG, Guo L, Energy Fuels, 31, 3675, 2017
  20. Zhang TT, Li XX, Qiao XJ, Zheng M, Guo L, Song WL, Lin WG, Energy Fuels, 30, 3140, 2016
  21. Chenoweth K, van Duin ACT, Goddard WA, J. Phys. Chem. A, 112, 1040, 2008
  22. Newsome DA, Sengupta D, Foroutan H, Russo MF, van Duin ACT, J. Phys. Chem. C, 116, 16111, 2012
  23. Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng YX, Shin YK, Junkermeie C, Engel-Herbert R, Janik MJ, Aktulga HM, Verstraelen T, Grama A, van Duin ACT, Npj Comput. Mater, 2, 15011, 2016
  24. van Duin ACT, Dasgupta S, Lorant F, Goddard WA, J. Phys. Chem. A, 105, 9396, 2001
  25. Van Duin ACT, Strachan A, Stewman S, Zhang QS, Xu X, Goddard WA, J. Phys. Chem. A, 107, 3803, 2003
  26. Xu F, Pan S, Liu CG, Zhao D, Liu H, Wang Q, Liu Y, RSC Adv., 7, 41512, 2017
  27. Li ZK, Wei XY, Yan HL, Zong ZM, Fuel, 153, 176, 2015
  28. Zheng M, Li XX, Nie FG, Guo L, Mol. Simul., 43, 13, 2017
  29. Xu F, Liu H, Wang Q, Pan S, Zhao D, Liu Y, Fuel, 256, 115884, 2019
  30. Ma TZ, Hu TT, Jiang DD, Zhang JL, Li W, Han Y, ?rmeci B, Korean J. Chem. Eng., 35, 4, 2018
  31. Zheng M, Wang Z, Li XX, Qiao XJ, Song WL, Guo L, Fuel, 177, 130, 2016
  32. Castro-Marcano F, Kamat AM, Russo MF, van Duin AC, Mathews JP, Combust. Flame, 159, 1272, 2012
  33. Chen C, Zhao LL, Wang JF, Lin SC, Ind. Eng. Chem. Res.,
  34. Li YY, Li GY, Zhang H, Wang JP, Li AQ, Liang YH, Fuel, 193, 331, 2017
  35. Akhtar J, Amin NS, Renew. Sust. Energ. Rev., 16, 5101, 2012
  36. Xu F, Liu H, Wang Q, Pan S, Zhao D, Liu Q, Liu Y, Fuel Process. Technol., 195, 106147, 2019
  37. Tian B, Qiao YY, Tian YY, Liu Q, J. Anal. Appl. Pyrolysis, 121, 376, 2016
  38. Hu JH, Si YH, Yang HP, Shao JG, Wang XH, Lei TZ, Agblevor FA, Chen HP, Energy Convers. Manag., 152, 229, 2017
  39. Hong D, Guo X, Fuel, 210, 58, 2017
  40. Morgan TJ, Kandiyoti R, Chem. Rev., 114, 3, 2014