Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 562-575, 2022
Experimental investigation of nanofluid injection assisted microwave radiationfor enhanced heavy oil recovery in a micromodel system
Microwave (MW) absorption ability of Fe3O4 nanoparticles was increased by attaching NiO nanomaterials to them through a co-precipitation approach. The surface of the synthesized nanohybrids was hydrophilized using three different natural agents to disperse in water. The synthesized nanohybrids were characterized by several analyses. The colloidal stability, magnetic behavior and the effect of surface modification agent on the MW absorption ability of the synthesized nanohybrids were investigated. The ability of surface-modified nanohybrids to increase the oil recovery factor was studied by injecting them into a 2D glass micromodel as the porous medium. The results showed that CA is the best modification agent with high colloidal stability, strong MW absorption and the lowest effect on the reduction of magnetic saturation of uncoated nanohybrids. Citric acid decreased the saturation magnetization from 55.43 emu/gr at the uncoated state to 52.82 emu/gr at the modified state. The oil sample with more polar compounds such as asphaltene could be further heated and its viscosity further reduced in an EM heating process. By adding 0.1 wt% of the Fe3O4-NiO nanohybrids, the viscosity of sample (S1) was reduced by 266mPa·s more than the MW radiation state alone. The findings indicate that MW radiation can significantly increase the heavy oil recovery factor. Water injection had only 16.6% oil recovery; however, this value increased to 41.5% by radiating 400 watts MW. This increase will be further enhanced by adding modified Fe3O4-NiO nanohybrids to water. The Fe3O4-NiO @ CA, Fe3O4-NiO @ APTES, and Fe3O4-NiO @ PEG had 69%, 63.5%, and 58.3% oil recovery, respectively. Finally, it was found that the surface modified nanohybrids could change the wettability of the porous medium from oil-wet to water-wet. After coating the glass with the Fe3O4-NiO @ CA nanofluid, the oil contact angle decreased from 140° to 17°.
[References]
  1. Gharibshahi R, Jafari A, Ahmadi H, J. Pet. Sci. Eng., 174, 374, 2017
  2. Guo K, Li H, Yu Z, Fuel, 185, 886, 2016
  3. Hashemi R, Nassar NN, Almao PP, Appl. Energy, 133, 374, 2014
  4. Hasanvand MZ, Golparvar A, Pet. Sci. Technol., 32, 631, 2014
  5. Bera A, Babadagli T, Appl. Energy, 151, 206, 2015
  6. Neto A, Thomas S, Bond G, Thibault-Starzyk F, Ribeiro F, Henriques C, Energy Fuels, 28, 2365, 2014
  7. Taheri-Shakib J, Shekarifard A, Naderi H, Fuel, 228, 243, 2018
  8. Taheri-Shakib J, Shekarifard A, Naderi H, J. Pet. Sci. Eng., 168, 1, 2018
  9. Gharibshahi R, Jafari A, Omidkhah M, Nezhad JR, AIP Conf. Proc., 1920, 20012, 2018
  10. Shafiai SH, Gohari A, J. Pet. Explor. Prod. Technol., 10, 2923, 2020
  11. Lake LW, Johns RT, Rossen WR, Pope GA, Fundamentals of enhanced oil recovery, Society of Petroleum Engineers (2014).
  12. Jafari A, Hasani M, Hosseini M, Gharibshahi R, Pet. Sci., 17, 434, 2020
  13. Mukhametshina A, Martynova E, J. Pet. Eng., 2013, 2013
  14. Taheri-Shakib J, Shekarifard A, Naderi H, J. Anal. Appl. Pyrolysis, 129, 171, 2018
  15. Taheri-Shakib J, Shekarifard A, Naderi H, J. Pet. Sci. Eng., 161, 530, 2018
  16. Asomaning J, Haupt S, Chae M, Bressler DC, Renew. Sustain. Energy Rev., 92, 642, 2018
  17. Ali H, Soleimani H, Yahya N, Lorimer S, Sabet M, Demiral BMR, Adebayo LL, J. Taibah Univ. Sci., 14, 217, 2020
  18. Wang W, Zhao C, Sun J, Wang X, Zhao X, Mao Y, Li X, Song Z, Energy, 87, 678, 2015
  19. Mozafari M, Nasri Z, J. Pet. Sci. Eng., 151, 40, 2017
  20. Duan HGY, Microwave absorbing materials, Jenny Stanford Publishing, New York (2016).
  21. Taheri-Shakib J, Shekarifard A, Naderi H, J. Anal. Appl. Pyrolysis, 128, 92, 2017
  22. Fianu J, Gholinezhad J, Hassan M, J. Pet. Sci. Eng., 186, 106768, 2020
  23. Greff J, Babadagli T, J. Pet. Sci. Eng., 112, 258, 2013
  24. Hascakir B, Acar C, Akin S, Energy Fuels, 23, 6033, 2009
  25. Hu L, Li HA, Babadagli T, Ahmadloo M, J. Pet. Sci. Eng., 154, 589, 2017
  26. Shang H, Yue Y, Zhang J, Wang J, Shi Q, Zhang W, Liu L, Omar S, Fuel Process. Technol., 170, 44, 2018
  27. Gharibshahi R, Jafari A, Haghtalab A, Karambeigi MS, RSC Adv., 5, 28938, 2015
  28. Shahmohammadi A, Jafari A, Front. Chem. Sci. Eng., 8, 320, 2014
  29. Ali H, Soleimani H, Yahya N, Khodapanah L, Sabet M, Demiral BMR, Hussain T, Lanre AL, J. Mol. Liq., 309, 113095, 2020
  30. Hasibuan MY, Regina S, Wahyu R, Situmorang D, Azmi F, Syahputra R, Batubara LPY, Prabowo F, Setiawan A, Afin MF, Preprints, 2020010115 (2020).
  31. Taheri-Shakib J, Shekarifard A, Naderi H, Fuel, 232, 704, 2018
  32. Bera A, Babadagli T, J. Pet. Sci. Eng., 153, 244, 2017
  33. Li K, Hou B, Wang L, Cui Y, Nano Lett., 14, 3002, 2014
  34. Shokrlu YH, Babadagli T, J. Pet. Sci. Eng., 119, 210, 2014
  35. Yahya N, Kashif M, Nasir N, Akhtar MN, Yusof NM, J. Nano Res., 17, 115, 2012
  36. Yahya N, Kashif M, Shafie A, Soleimani H, Zaid HM, Latiff NRA, J. Nano Res., 26, 89, 2014
  37. Nasri Z, Chem. Eng. Process. Intensif., 146, 107675, 2019
  38. Nasri Z, Mozafari M, J. Pet. Sci. Eng., 161, 427, 2018
  39. Greff J, Babadagli T, in Int. Pet. Technol. Conf., Bangkok, Thailand (2011).
  40. Soleimani H, Yahya N, Latiff NRA, Zaid HM, Demiral B, Amighian J, J. Nano Res., 26, 111, 2014
  41. Zaid HM, Yahya N, Latiff NRA, J. Nano Res., 21, 103, 2013
  42. Zhou K, Zhou X, Liu J, Huang Z, J. Pet. Sci. Eng., 188, 106943, 2020
  43. Li N, Huang GW, Li YQ, Xiao HM, Feng QP, Hu N, Fu SY, ACS Appl. Mater. Interfaces, 9, 2973, 2017
  44. dizajyekan BS, Jafari A, Hasani M, Vafaei-Sefti M, Fakhroueian Z, Baghbansalehi M, Appl. Nanosci., 10, 955, 2020
  45. Gharibshahi R, Omidkhah M, Jafari A, Fakhroueian Z, Fuel, 282, 118603, 2020
  46. Worawong A, Jutarosaga T, Onreabroy W, Adv. Mater. Res., 979, 208, 2014
  47. Jafari A, Shayesteh SF, Salouti M, Boustani K, Indian J. Phys., 89, 551, 2015
  48. Zhao L, Yang H, Li S, Yu L, Cui Y, Zhao X, Feng S, J. Magn. Magn. Mater., 301, 287, 2006
  49. Mensah TO, Wang B, Bothun G, Davis V, Winter J, Nanotechnology commercialization: Manufacturing processes and products, John Wiley & Sons (2017).
  50. Li L, Mak KY, Leung CW, Chan KY, Chan WK, Zhong W, Pong PWT, Microelectron. Eng., 110, 329, 2013
  51. Liu Y, Li Y, Li XM, He T, Langmuir, 29, 15275, 2013
  52. Shen XC, Fang XZ, Zhou YH, Liang H, Chem. Lett., 33, 1468, 2004
  53. Wu W, He Q, Jiang C, Nanoscale Res. Lett., 3, 397, 2008
  54. Garc?a-Jimeno S, Estelrich J, Colloids Surfaces A Physicochem. Eng. Asp., 420, 74, 2013
  55. Masoudi A, Hosseini HRM, Shokrgozar MA, Ahmadi R, Oghabian MA, Int. J. Pharm., 433, 129, 2012
  56. Yousefvand HA, Jafari A, J. Pet. Sci. Eng., 162, 283, 2018
  57. Elyaderani G, Seyed M, Jafari A, Razavinezhad J, SPE J., 24, 2681, 2019
  58. Shorstkii I, Yakovlev N, Mater. Res. Express, 6, 46104, 2019
  59. Diallo A, Kaviyarasu K, Ndiaye S, Mothudi BM, Ishaq A, Rajendran V, Maaza M, Green Chem. Lett. Rev., 11, 166, 2018
  60. Ghazanfari MR, Kashefi M, Jaafari MR, Appl. Surf. Sci., 375, 50, 2016
  61. Yu W, Xie H, J. Nanomater., 2012, 1, 2012
  62. Nigam S, Barick KC, Bahadur D, J. Magn. Magn. Mater., 323, 237, 2011
  63. De Sousa ME, van Raap MBF, Rivas PC, Zelis PM, Girardin P, Pasquevich GA, Alessandrini JL, Muraca D, S?nchez FH, J. Phys. Chem. C, 117, 5436, 2013
  64. Shinohara S, Eom N, The EJ, Tamada K, Parsons D, Craig VSJ, Langmuir, 34, 2595, 2018
  65. Sun J, Wang W, Yue Q, Materials (Basel), 9, 231, 2016
  66. L. Hanyong, C. Kexin, J. Ling, W. Leilei and Y. Bo, J, J. Pet. Sci. Eng., 170, 374, 2018
  67. Peng B, Zhang L, Luo J, Wang P, Ding B, Zeng M, Cheng Z, RSC Adv., 7, 32246, 2017