Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 504-514, 2022
Incipient fault diagnosis for centrifugal chillers using kernel entropycomponent analysis and voting based extreme learning machine
Incipient fault detection and diagnosis for centrifugal chillers is significant for maintaining safe and effective system operation. Due to the advantages of simple learning algorithm and high generalization capability, the extreme learning machine (ELM) can identify faults quickly and precisely in comparison to conventional classification methods such as back propagation neural network (BPNN). This paper reports an effective diagnosis method for incipient chiller faults with the integration of kernel entropy component analysis (KECA) and voting based ELM (VELM). KECA was first performed to reduce the dimensionality of the original input data so as to minimize the model complexity and computational cost. Instead of using a single ELM, multiple independent ELMs were adopted in VELM, and then the class label could be predicted based on the majority voting method. Using the experimental data of seven typical faults together with a normal operation, the proposed KECA-VELM fault diagnostic model was trained and further validated. The results show that a better fault diagnosis performance can be achieved using the KECA-VELM classifier compared with the conventional BPNN, ELM and VELM based classifiers. The overall average fault diagnosis accuracy for the faults at the least severity level was reported over 95% based on the proposed method.
[References]
  1. IEA, The Future of Cooling in China, International Energy Agency (2019).
  2. IEA, The Future of Cooling, International Energy Agency (2018).
  3. Comstock MC, Development of analysis tools for the evaluation of fault detection and diagnostics in chillers, Purdue University (1999).
  4. Katipamula S, Brambley MR, HVAC&R Research, 11(2), 169, 2005
  5. Katipamula S, Brambley MR, HVAC&R Research, 11(1), 3, 2005
  6. Shin Y, Karng SW, Kim SY, Int. J. Refrig., 40, 152, 2014
  7. Sun L, Wu J, Jia H, Liu X, Chin. J. Chem. Eng., 25(12), 1812, 2017
  8. Fan C, Yan D, Xiao F, Li A, An J, Kang X, Build. Simul.- China, 14(1), 3, 2021
  9. Han H, Cao ZK, Gu B, Ren N, HVAC&R Research, 16(3), 295, 2010
  10. Guo Y, Tan Z, Chen H, Li G, Wang J, Huang R, Liu J, Ahmad T, Appl. Energy, 225, 732, 2018
  11. Guo Y, Li G, Chen H, Wang J, Guo M, Sun S, Hu W, Appl. Therm. Eng., 125, 1402, 2017
  12. Li S, Wen J, Energ. Buildings, 68, 63, 2014
  13. Lee KP, Wu BH, Peng SL, Build. Environ., 157, 24, 2019
  14. Zhao Y, Wang SW, Xiao F, Appl. Energy, 112, 1041, 2013
  15. Li GN, Hu YP, Chen HX, Shen LM, Li HR, Hu M, Liu J, Sun K, Energ. Buildings, 116, 104, 2016
  16. Wang ZW, Wang L, Liang KF, Tan YY, Appl. Therm. Eng., 141, 898, 2018
  17. Z. Du, X. Jin and Y. Yang, Appl. Energy, 86(9), 1624, 2009
  18. Du Z, Fan B, Jin X, Chi J, Build. Environ., 73, 1, 2014
  19. Chang CC, Lin CJ, ACM Trans. Intell. Syst. Technol., 2(3), 1, 2011
  20. Liang J, Du R, Int. J. Refrig., 30(6), 1104, 2007
  21. Han H, Gu B, Kang J, Li ZR, Appl. Therm. Eng., 31(4), 582, 2011
  22. Yan K, Shen W, Mulumba T, Afshari A, Energ. Buildings, 81, 287, 2014
  23. Huang R, Liu J, Chen H, Li Z, Liu J, Li G, Guo Y, Wang J, Appl. Therm. Eng., 136, 633, 2018
  24. Huang GB, Zhu QY, Siew CK, Neurocomputing, 70(1), 489, 2006
  25. Huang G, Zhou H, Ding X, Zhang R, IEEE T. Syst. Man Cy. B, 42(2), 513, 2012
  26. Zong W, Huang GB, Neurocomputing, 74(16), 2541, 2011
  27. Mohammed AA, Minhas R, Hu QJ, Sid-Ahmed MA, Pattern Recogn., 44(10), 2588, 2011
  28. Xu Y, Dai Y, Dong ZY, Zhang R, Meng K, Neural Comput. Appl., 22(3), 501, 2013
  29. Zhang M, Liu X, Zhang Z, Chin. J. Chem. Eng., 24(8), 1013, 2016
  30. Haidong S, Hongkai J, Xingqiu L, Shuaipeng W, Knowl. Based Syst., 140, 1, 2018
  31. Chen Z, Wu L, Cheng S, Lin P, Wu Y, Lin W, Appl. Energy, 204, 912, 2017
  32. Cao J, Lin Z, Huang GB, Liu N, Inf. Sci., 185(1), 66, 2012
  33. Chen Y, Lan L, Energ. Buildings, 41(8), 881, 2009
  34. Du ZM, Jin XQ, Wu LZ, Build. Environ., 42(9), 3221, 2007
  35. Yu X, Wu J, Gao J, CIESC J., 71(7), 3151, 2020
  36. Jenssen R, IEEE Trans. Pattern Anal. Mach. Intell., 32(5), 847, 2010
  37. Xia Y, Ding Q, Li Z, Jiang A, Build. Simul.- China, 14(1), 53, 2021
  38. Bai L, Han Z, Ren J, Qin X, Appl. Soft Comput., 92, 106245, 2020
  39. R?nyi A, On measures of entropy and information, In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. The Regents of the University of California (1961).
  40. Parzen E, Ann. Math. Statis, 33(3), 1065, 1962
  41. Jenssen R, Eltoft T, Girolami M, Erdogmus D, Kernel maximum entropy data transformation and an enhanced spectral clustering algorithm, in Conference on Advances in Neural Information Processing Systems (2006).
  42. Serre D, Matrices: Theory and applications, Second edition, New York, Springer (2010).