Issue
Korean Journal of Chemical Engineering,
Vol.39, No.3, 461-474, 2022
Recent progress in electrochemical reduction of CO2 into formate and C2 compounds
Global warming and climate change enhanced by the high atmospheric CO2 concentration have been correlated to the frequency of extreme weather causing a significant amount of property damage and loss of human lives. Among current atmospheric CO2 concentration control strategies, the electrochemical reduction of CO2 (eCO2R) process is a promising technology that can utilize CO2 gas as a feedstock to produce valuable C1 and C2 compounds at room temperature. Since the eCO2R reaction is limited by high activation energy and mass transfer, the choice of the electrocatalyst and the configuration of the CO2 electrolyzer have a significant impact on the activity and selectivity of the eCO2R process. This review discusses current technological advancements of electrocatalytic materials and the design of the gas diffusion electrodes that increase energy efficiency and reduce the mass transfer resistance of the CO2 conversion into C1 with a focus on formate and C2 chemical compounds. A techno-economic analysis is briefly provided, and future and technical challenges of the CO2 conversion at the industrial scale into formate and C2 products are also addressed.
[References]
  1. Lindsey R, National Oceanic and Atmospheric Administration (2020).
  2. Lathi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF, Nature, 453, 379, 2008
  3. Blake ES, Zelinsky DA, National Oceanic and Atmospheric Administration and National Weather Service (2018).
  4. Murphy JD, National Oceanic and Atmospheric Administration (2018).
  5. Cangialosi JP, Latto AS, Berg R, National Oceanic and Atmospheric Administration and National Weather Service (2018).
  6. Pasch RJ, Penny AB, Berg R, National Oceanic and Atmospheric Administration and National Weather Service (2019).
  7. Flooded future: Global vulnerability to sea level rise worse than previously understood. Climate Central (2019).
  8. C40 Cities, https://www.c40.org/other/the-future-we-don-twant-staying-afloat-the-urban-response-to-sea-level-rise., 2019.
  9. Ystad PAM, Bolland O, Hillestad M, Energy Procedia, 23, 33, 2012
  10. Dave N, Do T, Palyman D, Feron PHM, Xu S, Gao S, Liu L, Energy Procedia, 4, 1869, 2011
  11. McCann M, Phan D, Wang X, Conway W, Burns R, Attalla M, Puxty G, Maeder M, J. Phys. Chem. A, 113, 5022, 2019
  12. Caplow M, J. Am. Chem. Soc., 90, 6795, 1968
  13. Danckwerts PV, Chem. Eng. Sci., 4, 443, 1979
  14. Rezazadeh F, Gale WF, Rochelle GT, Sachde D, Int. J. Greenhouse Gas Control, 58, 246, 2017
  15. Karimi M, Hillestad M, Svendsen HF, Energy Procedia, 23, 15, 2012
  16. Bert M, Davidson O; de Coninck H, Loos M, Meyer L, Cambridge University Press (2005).
  17. Celia MA, Nordbotten JM, Bachu S, Dobossy M, Court B, Energy Procedia, 1, 2573, 2009
  18. Song J, Zhang D, Environ. Sci. Technol., 47, 9, 2013
  19. Kaiser P, Unde RB, Kern C, Jess A, Chem. Ing. Tech., 4, 489, 2013
  20. Fisher F, Tropsch H, Brennstoff-Chem, 4, 276, 1923
  21. Anderson RB, Catalysts for the Fischer-Tropsch synthesis: Chap. 2 in catalysis, Reinhold Publishing Corp, New York (1956).
  22. Vayenas C, Modern aspects of electrochemistry, Springer, New York (2008).
  23. Kuhl KP, Cave ER, Abram DN, Jaramillo TF, Energy Environ. Sci., 5, 7050, 2012
  24. Min X, Kanan MW, J. Am. Chem. Soc., 137, 4701, 2015
  25. Guo RH, Liu CF, Wei TC, Hu CC, Electrochem. Commun., 80, 24, 2017
  26. Valenti M, Prasad NP, Kas R, Bohra D, Ma M, Balasubramanian V, Chu L, Gimenez S, Bisquert J, Dam B, Smith WA, ACS Catal., 9, 3527, 2019
  27. Jouny M, Luc W, Jiao F, Ind. Eng. Chem. Res., 57, 2165, 2018
  28. Keith DW, Holmes G, Angelo DS, Heidel KA, Joule, 2, 1573, 2018
  29. Bolinger M, Seel J, Dana R, Utility-Scale Solar, Empirical Trends in Project Technology, Cost, Performance, and PPA Pricingin the United States ? 2019 Edition. Lawrence Berkeley National Laboratory (2019).
  30. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT,Kenis PJA, Masel RI, Science, 334, 643, 2011
  31. Manthiram K, Beberwyck BJ, Alivisatos AP, J. Am. Chem. Soc., 136, 13319, 2014
  32. Ren D, Ang BS, Yeo BS, ACS Catal., 6, 8239, 2016
  33. Dinh CT, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM,de Arquer FPG, Kiani A, Edwards JP, Luna PD, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH, Science, 360, 783, 2018
  34. Industry - Ethylene and Other Olefins. Dialogue on European Decarbonisation Strategies.
  35. Zhang BA, Ozel T, Elias JS, Costentin C, Nocera DG, ACS Cent. Sci., 5, 1097, 2019
  36. Singh MR, Clarkab EL, Bell AT, Phys. Chem. Chem. Phys., 17, 18924, 2015
  37. L?we A, Rieg C, Hierlemann T, Salas N, Kopljar D, Wagner N, Klemm IE, ChemElectroChem, 6, 4497, 2019
  38. Xing Z, Hu L, Ripatti DS, Hu X, Feng X, Nat. Commun., 136, 1, 2021
  39. Azuma M, Hashimoto K, Watanabe M, Sakata T, J. Electrochem. Soc., 137, 1172, 1990
  40. Hegner R, Rosa LFM, Harnisch F, Appl. Catal. B: Environ., 238, 546, 2018
  41. Bohlen B, Wastl D, Radomski J, Sieber V, Vieir L, Electrochem. Commun., 110, 106597, 2020
  42. Innocent B, Liaigre D, Pasquier D, Ropital F, Leger JM, Kokoh KB, J. Appl. Electrochem., 39, 227, 2009
  43. Lv W, Zhang R, Gao P, Lei L, J. Power Sources, 253, 276, 2014
  44. Bertin E, Garbarino S, Roy C, Kazemi S, Guay D, J. CO2 Util., 19, 276, 2017
  45. Hori Y, Wakebe H, Tsukamoto T, Koga O, Electrochim. Acta, 39, 1833, 1994
  46. Feaster JT, Shi C, Cave ER, Hatsukade T, Abram DN, Kuhl KP, Hahn C, Nørskov JK, Jaramillo TF, ACS Catal., 7, 4822, 2017
  47. Safaei TS, Mepham A, Zheng X, Pang Y, Dinh CT, Liu M, Sinton D, Kelley SO, Sargent EH, Nano Lett., 16, 7224, 2016
  48. Han N, Wang Y, Yang H, Deng J, Wu J, Li Y, Li Y, Nat. Commun., 9, 1320, 2018
  49. Chen W, Ji J, Feng X, Duan X, Qian G, Li P, Zhou X, Chen D,Yuan W, J. Am. Chem. Soc., 136, 167369, 2014
  50. Perez?Alonso FJ, McCarthy DN, Nierhoff A, Hernandez?Fernandez P, Strebel C, Stephens IEL, Nielsen JH, Chorkendorff I, Angew. Chem.-Int. Edit., 51, 4641, 2012
  51. ?vila-Bol?var B, Garc?a-Cruz L, Montiel V, Solla-Gull?n J, Molecules, 24, 2032, 2019
  52. Luo W, Xie W, Li M, Zhang J, Z?ttel A, J. Mater. Chem. A, 7, 4505, 2019
  53. Qiu Y, Du J, Dai C, Dong W, Tao C, J. Electrochem. Soc., 165, 594, 2018
  54. Castillo AD, Alvarez-Guerra M, Irabien A, AIChE J., 60, 3557, 2014
  55. Castillo AD, Alvarez-Guerra M, Solla-Gull?n J, S?ez A, Montiel V, Irabien A, Appl. Energy, 157, 165, 2015
  56. Castillo AD, Alvarez-Guerra M, Solla-Gull?n J, S?ez A, Montiel V, Irabien A, J. CO2 Util., 18, 222, 2017
  57. Lee W, Kim YE, Youn MH, Jeong SK, Park KT, Angew. Chem.-Int. Edit., 57, 6883, 2018
  58. Podlovchenko BI, Kolyadko EA, Lu S, J. Electroanal. Chem., 373, 185, 1994
  59. Gabrielli C, Grand PP, Lasia A, Perrota H, J. Electrochem. Soc., 115, 1937, 2016
  60. Lee CW, Cho NH, Nam KT, Hwang YJ, Min BK, Nat. Commun., 10, 3919, 2019
  61. Hammer B, Nørskov JK, Adv. Catal., 45, 71, 2000
  62. Kortlever R, Peters I, Koper S, Koper MTM, ACS Catal., 5, 3916, 2015
  63. Jiang B, Zhang XG, Jiang K, Wu DY, Cai WB, J. Am. Chem. Soc., 140, 28880, 2018
  64. Wang WJ, Hwang S, Kim T, Ha S, Scudiero L, Electrochim. Acta, 387, 138531, 2021
  65. Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MTM, J. Phys. Chem. Lett., 6, 4073, 2015
  66. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK, Energy Environ. Sci., 3, 1311, 2010
  67. Schoute KJP, Kwo Y, van der Ham CJM, Qin HZ, Koper MTM, Chem. Sci. J., 2, 1902, 2011
  68. Hori Y, Murata A, Takahashi R, J. Chem. Soc.-Faraday Trans., 85, 2309, 1989
  69. Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J, ChemPhysChem, 18, 3266, 2017
  70. Cheng T, Xiao H, Goddard III WA, J. Phys. Chem. Lett., 6, 4767, 2015
  71. Lum Y, Cheng T, Goddard III WA, Ager JW, J. Am. Chem. Soc., 140, 9337, 2018
  72. Raciti D, Mao M, Park JH, Wang C, J. Electrochem. Soc., 10, 799, 2018
  73. Xiao H, Cheng T, Goddard III WA, Sundararaman R, J. Am. Chem. Soc., 138, 483, 2016
  74. Liu X, Schlexer P, Xiao J, Ji Y, Wang L, Sandberg RB, Tang M,Brown KS, Peng H, Ringe S, Hahn C, Jaramillo TF, Nørskov JK, Chan K, Nat. Commun., 10, 32, 2019
  75. Verma S, Hamasaki Y, Kim C, Huang W, Lu S, Jhong HRM, Gewirth AA, Fujigaya T, Nakashima N, Kenis PJA, ACS Energy Lett., 3, 193, 2018
  76. Leonard ME, Clarke LE, Forner-Cuenca A, Brown SM, Brushett FR, ChemSusChem, 13, 400, 2020
  77. DeWulf DW, Jin T, Bard AJ, J. Electrochem. Soc., 136, 1686, 1989
  78. Hori Y, Takahashi R, Yoshinami Y, Murata A, J. Phys. Chem. B, 101, 7075, 1997
  79. Liu Z, Masel RI, Chen Q, Kutz R, Yang H, Lewinski K, Kaplun M, Luopa S, Lutz DR, J. CO2 Util., 15, 50, 2016
  80. Kutz RB, Chen Q, Yang H, Sajjad SD, Liu Z, Masel RI, Energy Technol., 5, 929, 2017
  81. Zheng T, Jiang K, Ta N, Hu Y, Zeng J, Liu J, Wang H, Joule, 3, 265, 2019
  82. Yin Z, Peng H, Wei X, Zhou H, Gong J, Huai M, Xiao L, Wang G, Lu J, Zhuang L, Energy Environ. Sci., 12, 2455, 2019
  83. Han L, Zhou W, Xiang C, Energy Lett., 3, 855, 2018
  84. Jouny M, Luc W, Jiao F, Nat. Catal, 1, 748, 2018
  85. Luc W, Fu X, Shi J, Lv JJ, Jouny M, Ko BH, Xu Y, Tu Q, Hu X, Wu J, Yue Q, Liu Y, Jiao F, Kang Y, Nat. Catal, 2, 423, 2019