Issue
Korean Journal of Chemical Engineering,
Vol.39, No.2, 451-459, 2022
Digital light processing 3D printing of multi-materials with improved adhesion using resins containing low functional acrylates
Digital light processing (DLP) 3D printing has received increasing attention due to high-resolution printing capability, mass productivity, and cheap equipment cost. Most of all, the layer resolution less than 50 μm overwhelms 200-300 μm layer resolution of its competitive technology, filament deposition modeling (FDM) 3D printing. Despite the advantage of the high resolution, weak mechanical properties of DLP 3D printouts have limited their industrial use. One of the easiest ways to improve mechanical property is the use of multi-materials that complement each other…s weak property. However, DLP 3D printing of multi-material printouts with reliable adhesion has been largely unexplored. In this study, we compared the mechanical properties of four pairs of multi-materials consisting of two different materials of the same thickness. A composition with highest modulus and ultimate strength was fixed as the first half layer, and the acrylate of the composition for the other half layer was modulated with a monomer having a functionality between 1 and 3. If the acrylate monomer…s functionality for the other half layer was less than three, the multi-material printout showed nearly averaged mechanical property of each material. We speculate that low functional acrylate with lower viscosity allows sufficient polymerization at the interface, enabling reliable adhesion. This approach that enables successful multi-material printing with improved adhesion and complementary mechanical properties will extend the use of DLP 3D printing in a broad range of industrial application that requires both sophisticated shape and mechanical strength.
[References]
  1. Wang X, Jiang M, Zhou Z, Guo J, Hui D, Compos. B. Eng., 110, 442, 2017
  2. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D, Compos. B. Eng., 143, 172, 2018
  3. Ligon SC, Liska R, Stampfl J, Gurr M, Mulhaupt R, Chem. Rev., 117(15), 10212, 2017
  4. Vaezi M, Chianrabutra S, Mellor B, Yang S, Virtual Phys. Prptotyp., 8, 19, 2013
  5. Bandyopadhyay A, Heer B, Mater. Sci. Eng. R-Rep., 129, 1, 2018
  6. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M, Bioact. Mater., 3, 144, 2018
  7. Liu W, Zhang YS, Heinrich MA, et al., Adv. Mater., 29, 160463, 2017
  8. Rafiee M, Farahani RD, Therriault D, Adv. Sci., 7, 190230, 2020
  9. Jeon SJ, Hauser AW, Hayward RC, Accounts Chem. Res., 50, 161, 2017
  10. Keating SJ, Gariboldi MI, Patrick WG, Sharma S, Kong DS, Oxman N, PLoS One, 11, e01606, 2016
  11. Cazon-Martin A, et al., Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol., 233, 160 (2019).
  12. Moore JP, Williams CB, Rapid Prototyp. J., 21, 675, 2015
  13. Lumpe TS, Mueller J, Shea K, Mater. Des., 162, 1, 2019
  14. Jiang Z, Diggle B, Tan ML, Viktorova J, Bennett CW, Connal LA, Adv. Sci., 7, 200137, 2020
  15. Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R, Polym. Test, 69, 157, 2018
  16. Lopes LR, Silva AF, Carneiro OS, Addit. Manuf., 23, 45, 2018
  17. Bellehumeur C, Li L, Sun Q, Gu P, J. Manuf. Process, 6, 170, 2004
  18. Espalin D, Ramirez JA, Medina F, Wicker R, Rapid Prototyp. J., 20, 236, 2014
  19. Li L, Lin Q, Tang M, Duncan AJE, Ke C, Chem. Eur. J., 19, 10768, 2019
  20. Jiang P, Ji Z, Zhang X, Liu Z, Wang X, Prog. Addit. Manuf., 3, 65, 2018
  21. Rocha VG, Saiz E, Tirichenko LS, Garcia-Tunon E, J. Mater. Chem. A, 8, 15646, 2020
  22. Tian K, Suo Z, Vlassak JJ, ACS Appl. Mater. Interfaces, 12, 31002, 2020
  23. Bagheri A, Jin J, ACS Appl. Polym. Mater., 1, 593, 2019
  24. Zhang J, Xiao P, Polym. Chem., 9, 1530, 2018
  25. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X, Bioact. Mater., 5, 110, 2020
  26. Ge Q, Li Z, Wang Z, Kowsari K, Zhang W, He X, Zhou J, Fang NX, Int. J. Extrem. Manuf., 2, 022004, 2020
  27. Borrello J, Nasser P, Iatridi JC, Costa KD, Addit. Manuf., 23, 374, 2018
  28. Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML, Sci. Rep., 6, 31110, 2016
  29. Han D, Yang C, Fang NX, Lee H, Addit. Manuf., 27, 606, 2019
  30. Khatri B, Frey M, Raouf-Fahmy A, Scharla MV, Hanemann T, Micromachines, 11, 532, 2020
  31. Maruyama T, Hirata H, Furukawa T, Maruo S, Opt. Mater. Express, 10, 2522, 2020
  32. Zhang B, Li S, Hingorani H, et al., J. Mater. Chem. B, 6, 3246, 2018
  33. Creton C, MRS Bull., 28, 434, 2003
  34. Taormina G, Sciancalepore C, Messori M, Bondioli F, J. Appl. Biomater. Funct. Mater., 16, 151, 2018
  35. Becker WT, Shipley RJ, Failure analysis and prevention, ASM International, Materials Park (2002).
  36. Ebnesajjad S, Handbook of adhesives and surface preparation: Technology, applications and manufacturing, William Andrew, Amsterdam (2011).
  37. Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK, Science, 363(6431), 1075, 2019