Issue
Korean Journal of Chemical Engineering,
Vol.39, No.2, 440-450, 2022
Hydrothermal synthesis and characterization of quartz nanocrystals - Implications from a simple kinetic growth model
Obtaining quartz nanocrystals (NCs) of high purity and uniform sizes remains a challenging problem. In this report, the synthesis and characterization of quartz NCs under hydrothermal conditions was investigated and the corresponding mathematical models were introduced to elucidate the growth kinetics of quartz NCs. Amorphous silica nanoparticles were dissolved in aqueous solutions followed by mild hydrothermal reactions, resulting in NCs with relatively uniform sizes and shapes. The NCs were made from highly crystalline α-quartz. Their hydrothermal growth process over an induction period of ~3 hr initially yielded amorphous silica nanoparticles that were aggregated into clusters. The crystallinity of α-quartz emerged from the products of the nanoparticle clusters after the induction period, which likely involved an amorphous to crystalline transition. The NCs continued to grow with increasing time. The growth kinetics exhibited a dependence on the square root of time, which has not been observed for other quartz nanocrystalline systems. The analysis suggests that the process is reaction-limited, not diffusion-limited, likely governed by the dissolved silicate monomer flux to the surface of the growing NCs followed by first-order rate-limiting attachment kinetics. This study highlights the growth kinetics of quartz NCs by unveiling the complex nature of multistep growth processes, offering an improved hydrothermal method for fine-tuning the size and morphology of quartz NCs, which have potential optoelectronics, sensing, and rechargeable battery, and novel biorefinery process applications.
[References]
  1. Deng H, Yin J, Ma J, Zhou J, Zhang L, Gao L, Jiao T, Appl. Surf. Sci., 543, 148821, 2021
  2. Geng R, Chang R, Zou Q, Shen G, Jiao T, Yan X, Small, 17, 200811, 2021
  3. Qian C, Yin J, Zhao J, Li X, Wang S, Bai Z, Jiao T, Colloids Surf. A: Physicochem. Eng. Asp., 610, 125752, 2021
  4. Xu Y, Wang R, Wang J, Li J, Jiao T, Liu Z, Chem. Eng. J., 417, 129233, 2021
  5. Hyde Emily D. E. R., Seyfaee Ahmad, Neville Frances, Moreno-Atanasio Roberto, Ind. Eng. Chem. Res., 55(33), 8891, 2016
  6. Jang EH, Pack SP, Kim I, Chung S, Sci. Rep., 10, 5558, 2020
  7. Qiao G, Liu L, Hao X, Zheng J, Liu W, Gao J, Zhang CC, Wang Q, Chem. Eng. J., 382, 122907, 2020
  8. Zhou Z, Zheng Y, Gao J, Jiang L, Wang Q, J. Sol-Gel Sci. Technol., 77, 205, 2016
  9. Pagliaro M, Silica-based materials for advanced chemical applications, Royal Society of Chemistry (2009).
  10. Mason B, Berry LG, Elements of mineralogy, W. H. Freeman, San Francisco (1968).
  11. Vatalis KI, Charalambides G, Benetis NP, Procedia Econ. Financ., 24, 734, 2015
  12. Ballato A, in Piezoelectricity: Evolution and future of a technology, Berlin Heidelberg, Berlin, Heidelberg (2008).
  13. Saigusa Y, in Advanced piezoelectric materials (second edition), K. Uchino, Ed., Woodhead Publishing (2017).
  14. Yoder CH, in Ionic compounds: Applications of chemistry to mineralogy, Wiley (2006).
  15. Spearing DR, Farnan I, Stebbins JF, Phys. Chem. Miner., 19, 307, 1992
  16. Bettermann P, Liebau F, Contrib. Mineral Petrol., 53, 25, 1975
  17. Fyfe WS, McKay DS, Am. Mineral., 47, 83, 1962
  18. Jung YH, Pack SP, Chung S, Mater. Res. Bull., 101, 67, 2018
  19. Liu J, Wang L, Wang J, Zhang LT, Mater. Res. Bull., 48(2), 416, 2013
  20. Wang X, Zhuang J, Peng Q, Li YD, Nature, 437, 121, 2005
  21. Yoshimura M, Byrappa K, J. Mater. Sci., 43(7), 2085, 2008
  22. Byrappa K, Keerthiraj N, Byrappa SM, in Handbook of crystal growth, P. Rudolph, Ed., Elsevier, Boston (2015).
  23. Cambon O, Haines J, Crystals, 7, 38, 2017
  24. Hervey PR, Foise JW, Min. Metall. Explor., 18, 1, 2001
  25. Johnson G, Foise J, in Encyclopedia of applied physics, VCH Publishers (1996).
  26. Bertone JF, Cizeron J, Wahi RK, Bosworth JK, Colvin VL, Nano Lett., 3, 655, 2003
  27. Buckley P, Hargreaves N, Cooper S, Commun. Chem., 1, 49, 2018
  28. Jiang XM, Jiang YB, Brinker CJ, Chem. Commun., 47, 7524, 2011
  29. Moon GS, Chung SW, Appl. Chem. Eng., 31(6), 697, 2020
  30. Moon G, Lee N, Kang S, Park J, Kim YE, Lee SA, Chitumalla RK, Jang J, Choe Y, Oh YK, Chung S, Chem. Eng. J., 413, 127467, 2021
  31. Finnegan MF, Zhang H, Banfield JF, Chem. Mater., 20, 3443, 2008
  32. Laudise R, J. Am. Chem. Soc., 81, 562, 1959
  33. Michibayashi K, Imoto H, Phys. Chem. Miner., 39, 213, 2012
  34. Moxon T, Carpenter M, Mineral. Mag., 73, 551, 2009
  35. de Ruijter WJ, Sharma R, McCartney MR, Smith DJ, Ultramicroscopy, 57, 409, 1995
  36. Malm JO, O'Keefe MA, Ultramicroscopy, 68, 13, 1997
  37. Ihinger PD, Zink SI, Nature, 404(6780), 865, 2000
  38. Smith GS, Alexander LE, Acta Crystallogr., 16, 462, 1963
  39. Wei PH, Z Kristallogr, 92, 355, 1935
  40. Takeuchi M, Martra G, Coluccia S, Anpo M, J. Near Infrared Specrosc., 17, 373, 2009
  41. Barr TL, Appl. Surf. Sci., 15, 1, 1983
  42. Post P, Wurlitzer L, Maus-Friedrichs W, Weber AP, Nanomater., 8, 530, 2018
  43. Holder CF, Schaak RE, ACS Nano, 13, 7359, 2019
  44. Balbuena PB, Gubbins KE, Langmuir, 9, 1801, 1993
  45. Sing KSW, Pure Appl. Chem., 57, 603, 1985
  46. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051, 2015
  47. Bullen CR, Mulvaney P, Nano Lett., 4, 2303, 2004
  48. LaMer V, Ind. Eng. Chem., 44, 1270, 1952
  49. LaMer VK, Dinegar RH, J. Am. Chem. Soc., 72, 4847, 1950
  50. Lee DK, Park SI, Lee JK, Hwang NM, Acta Mater., 55, 5281, 2007
  51. Lifshitz IM, Slyozov VV, J. Phys. Chem. Solids, 19, 35, 1961
  52. Lin X, Sorensen C, Klabunde K, J. Nanopart. Res., 2, 157, 2000
  53. Peng XG, Wickham J, Alivisatos AP, J. Am. Chem. Soc., 120(21), 5343, 1998
  54. Reiss H, J. Chem. Phys., 19, 482, 1951
  55. Robb DT, Privman V, Langmuir, 24(1), 26, 2008
  56. Saunders AE, Sigman MB, Korgel BA, J. Phys. Chem. B, 108(1), 193, 2004
  57. Sugimoto T, Adv. Colloid Interface Sci., 28, 65, 1987
  58. Talapin DV, Rogach AL, Haase M, Weller H, J. Phys. Chem. B, 105(49), 12278, 2001
  59. Wagner C, Z. Elektrochem., 65, 581, 1961
  60. Rempel JY, Bawendi MG, Jensen KF, J. Am. Chem. Soc., 131(12), 4479, 2009
  61. Wang F, Richards VN, Shields SP, Buhro WE, Chem. Mater., 26, 5, 2014
  62. Viswanatha R, Sarma DD, in Nanomaterials chemistry: Recent developments and new directions, Wiley-VCH Verlag GmbH & Co. KgaA (2007).
  63. Ostwald W, Phys. Chem., 37, 385, 1901
  64. Perez M, Scr. Mater., 52, 709, 2005
  65. Tyrrell H, J. Chem. Educ., 41, 397, 1964
  66. Laudise RA, Chem. Eng. News, 65, 30, 1987
  67. Rebreanu L, Vanderborght JP, Chou L, Mar. Chem., 112, 230, 2008
  68. Chen YF, Johnson E, Peng XG, J. Am. Chem. Soc., 129(35), 10937, 2007
  69. Drofenik M, Kristl M, Znidarsic A, Hanzel D, Lisjak D, J. Am. Ceram. Soc., 90(7), 2057, 2007
  70. Jana NR, Peng XG, J. Am. Chem. Soc., 125(47), 14280, 2003
  71. Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG, J. Am. Chem. Soc., 129(45), 13939, 2007
  72. Meli L, Green PF, ACS Nano, 2, 1305, 2008
  73. Morales MP, Gonzalez-Carreno T, Serna CJ, J. Mater. Res., 7, 2538, 1992
  74. Murray CB, Norris DJ, Bawendi MG, J. Am. Chem. Soc., 115, 8706, 1993
  75. Owen JS, Chan EM, Liu HT, Alivisatos AP, J. Am. Chem. Soc., 132(51), 18206, 2010
  76. Qu L, Yu WW, Peng X, Nano Lett, 4, 465, 2004
  77. Stoeva S, Klabunde KJ, Sorensen CM, Dragieva I, J. Am. Chem. Soc., 124(10), 2305, 2002
  78. Thessing J, Qian JH, Chen HY, Pradhan N, Peng XG, J. Am. Chem. Soc., 129(10), 2736, 2007
  79. Zheng N, Fan J, Stucky GD, J. Am. Chem. Soc., 128(20), 6550, 2006
  80. Seshadri R, Subbanna GN, Vijayakrishnan V, Kulkarni GU, Ananthakrishna G, Rao CN, J. Phys. Chem., 99(15), 5639, 1995
  81. Westcott SL, Oldenburg SJ, Lee TR, Halas NJ, Langmuir, 14(19), 5396, 1998
  82. Xiao JY, Qi LM, Nanoscale, 3, 1383, 2011
  83. Lin L, Chen M, Qin HY, Peng XG, J. Am. Chem. Soc., 140(50), 17734, 2018
  84. Shankar R, Wu BB, Bigioni TP, J. Phys. Chem. C, 114, 15916, 2010
  85. Ruditskiy A, Zhao M, Gilroy KD, Bara M, Xia Y, Chem. Mater., 28, 8800, 2016
  86. Wong EM, Bonevich JE, Searson PC, J. Phys. Chem. B, 102(40), 7770, 1998
  87. Viswanatha R, Sapra S, Satpati B, Satyam PV, Dev BN, Sarma DD, J. Mater. Chem., 14, 661, 2004
  88. Cheong S, Watt J, Ingham B, Toney MF, Tilley RD, J. Am. Chem. Soc., 131(40), 14590, 2009
  89. Viswanatha R, Amenitsch H, Sarma DD, J. Am. Chem. Soc., 129(14), 4470, 2007
  90. Yao LY, Zhu YX, Liu CQ, Jiao RH, Lu YH, Tan RX, J. Chromatogr. B, 989, 122, 2015
  91. Woehl TJ, Chem. Mater., 32, 7569, 2020
  92. Zhang J, Huang F, Lin Z, Nanoscale, 2, 18, 2010