Issue
Korean Journal of Chemical Engineering,
Vol.39, No.2, 431-439, 2022
Carbon coated MFe2O4 (M=Fe, Co, Ni) magnetite nanoparticles: A smart adsorbent for direct yellow and moderacid red dyes
We report here a simple approach for synthesis of carbon coated magnetite (C@MFe2O4, M=Co, Ni, Fe) with shell@core nanostructured composites that we used as magnetic-nanosorbents for direct yellow (DYG) and moderacid red (RS) as pollutant textile dyes removal via an adsorption process. The synthesized C@MFe2O4 was characterized by TEM, SEM, EDX, XRD, FT-IR and VSM techniques. TEM results indicated that C@MFe2O4 nanocomposites have 20-30 nm of MFe2O4 nanoparticle core and 2-3 nm in thickness of the amorphous carbon shell. The synthesized C@MFe2O4 nanocomposites have the zero point charge (pHZPC) at 5.5, which suggests that DYG and RS, anionic dyes can be adsorbed onto the C@MFe2O4 nanosorbents in the acidic medium. Adsorption of DYG and RS onto magnetic nanosorbents was optimized and adsorption thermodynamic parameters were evaluated, clearly indicating that the adsorption of RS onto synthesized magnetic-nanosorbents was facile more than that DYG. The adsorption isotherm data showed that the adsorption processes of DYG and RS onto Fe3O4 or C@MFe2O4 nanosorbents are more suitable for the Langmuir model than Freundlich model. The maximum adsorption capacity (qmax) of DYG dye onto Fe3O4, C@Fe3O4 and C@CoFe2O4 adsorbents was 14.641, 36.232 and 7.85mg g-1, respectively; meanwhile, these values were 41.152, 61.728 and 39.683mg g-1 for RS dye. These obtained data indicate that the developed Fe3O4, C@Fe3O4 and C@CoFe2O4 nanoparticles can be used as recoverable and recyclable adsorbents for not only organic pigments adsorption but also for heavy metal ion removal or protein extraction as well.
[References]
  1. Abedi S, Nekouei F, E-J. Chem., 8, 1588, 2011
  2. Revathi G, Ramalingam S, Subramaniam P, Ganapathi A, EJ. Chem., 8, 1536, 2011
  3. Said AEAA, Aly AAM, El-Wahab MMA, Soliman SAEF, El-Hafez AAA, Helmey V, Goda MN, Energy Environ. Eng., 1, 10, 2013
  4. Hoang NTT, Tran ATK, Hoang MH, Nguyen TTH, Bui XT, Environ. Technol. Innov., 21, 101255, 2020
  5. Silva VL, Dilarri G, Mendes CR, Lovaglio RB, Goncalves AR, Montagnolli RN, Contiero J, J. Mol. Liq., 321, 114753, 2021
  6. Tran HV, Hoang LT, Huynh CD, Chem. Phys., 535, 110793, 2020
  7. Tran HV, Tran TL, Le TD, Le TD, Nguyen HMT, Dang LT, Mater. Res. Express, 6, 025018, 2018
  8. Tran HV, Bui LT, Dinh TT, Le DH, Huynh CD, Trinh AX, Mater. Res. Express, 4, 035701, 2017
  9. Hankare PP, Patil RP, Jadhav AV, Garadkar KM, Sasikala R, Appl. Catal. B: Environ., 107(3-4), 333, 2011
  10. Ceballos-Chuc MC, Ramos-Castillo CM, Alvarado-Gil JJ, Oskam G, Rodriguez-Gattorno G, J. Phys. Chem. C, 122, 19921, 2018
  11. Al Othman ZA, Habila MA, Ali R, Ghafar AA, Eldin Hassouna MS, Arabian J. Chem., 7, 1148, 2014
  12. Kumar A, Jena HM, J. Clean Prod., 137, 1246, 2016
  13. El-Shafey EI, Ali SNF, Al-Busafi S, Al-Lawati HAJ, J. Environ. Chem. Eng., 4, 2713, 2016
  14. Almeida CAP, Debacher NA, Downs AJ, Cottet L, Mello CAD, J. Colloid Interface Sci., 332(1), 46, 2009
  15. Wang L, Zhang J, Wang A, Colloids Surf. A: Physicochem. Eng. Asp., 322, 47, 2008
  16. Dutta D, Thakur D, Bahadur D, Chem. Eng. J., 281, 482, 2015
  17. Mittal H, Maity A, Ray SS, Chem. Eng. J., 279, 166, 2015
  18. Tolba GMK, Bastaweesy AM, Ashour EA, Abdelmoez W, Khalil KA, Barakat NAM, Arabian J. Chem., 9, 287, 2016
  19. EL-Mekkawi DM, Ibrahim FA, Selim MM, J. Environ. Chem. Eng., 4, 1417, 2016
  20. Jamil TS, Ghafar HHA, Ibrahim HS, El-Maksoud IHA, Solid State Sci., 13, 1844, 2011
  21. Hammed AK, Dewayanto N, Du D, Rahim MHA, Nordin MR, J. Environ. Chem. Eng., 4, 2607, 2016
  22. Shen Z, Fan X, Hou D, Jin F, O'Connor D, Tsang DCW, Ok YS, Alessi DS, Chemosphere, 233, 149, 2019
  23. Yang SS, Chen Y, Zhang Y, Zhou HM, Ji XY, He L, Xing DF, Ren NQ, Ho SH, Wu WM, Environ. Pollut., 252, 1142, 2019
  24. Amin N, Hussain A, Alamzeb S, Begum S, Food Chem., 136, 1515, 2013
  25. Trevino-Cordero H, et al., Ind. Crop. Prod., 42, 315, 2013
  26. Kominko H, Gorazda K, Wzorek Z, J. Environ. Manage., 248, 109283, 2019
  27. Xu ZM, Wang Z, Gao Q, Wang LL, Chen LL, Li QG, Jiang JJ, Ye HJ, Wang DS, Yang P, J. Environ. Manage., 244, 453, 2019
  28. Saeed A, Iqbal M, Akhtar MW, J. Hazard. Mater., 117(1), 65, 2005
  29. Page K, Harbottle MJ, Cleall PJ, Hutchings TR, Sci. Total Environ., 487, 260, 2014
  30. Gupta N, Kushwaha AK, Chattopadhyaya MC, Arabian J. Chem., 9, S707, 2016
  31. Hassan W, Farooq U, Ahmad M, Athar M, Khan MA, Arabian J. Chem., 10, S1512, 2017
  32. Leite AJB, Lima CE, dos Reis GS, Thue PS, Saucier C, Rodembusch FS, Dias SLP, Umpierres CS, Dotto GL, J. Environ. Chem. Eng., 5, 4307, 2017
  33. Schio RR, da Rosa BC, Goncalves JO, Pinto LAA, Mallmann ES, Dotto GL, Int. J. Biol. Macromol., 121, 373, 2019
  34. Atrous M, Sellaoui L, Bouzid M, Lima EC, Thue PC, Bonilla-Petriciolet A, Lamine AB, J. Mol. Liq., 294, 111610, 2019
  35. Kosmulski M, J. Colloid Interface Sci., 275(1), 214, 2004
  36. Kosmulski M, J. Colloid Interface Sci., 298(2), 730, 2006
  37. Pirbazari AE, Saberikhah E, Kozani SSH, Water Resour. Ind., 7-8, 23, 2014
  38. Wang L, Li J, Wang Y, Zhao L, Jiang Q, Chem. Eng. J., 181-182, 72, 2012
  39. Millan A, Urtizberea A, Silva NJO, Palacio F, Amaral VS, Snoeck E, Serin V, J. Magn. Magn. Mater., 312, L5, 2007
  40. Stoia M, Pacurariu C, Istratie R, Niznansky D, J. Therm. Anal. Calorim., 121, 989, 2015
  41. Bao X, Qiang Z, Chang JH, Ben W, Qu J, J. Environ. Sci., 26, 962, 2014
  42. Zhang W, Zhang LY, Zhao XJ, Zhou Z, J. Mol. Liq., 222, 995, 2016
  43. Kyzas GZ, Deliyanni EA, Matis KA, J. Chem. Technol. Biotechnol., 89(2), 196, 2014
  44. Slavov L, Abrashev MV, Merodiiska T, Gelev C, Vandenberghe RE, Markova-Deneva I, Nedkov I, J. Magn. Magn. Mater., 322, 1904, 2010
  45. Panta PC, Bergmann CP, J. Material. Sci. Eng., 5, 1, 2015
  46. Sotomayor F, Cychosz KA, Thommes M, Accounts Mater. Surf. Res., 3, 34, 2018