Issue
Korean Journal of Chemical Engineering,
Vol.39, No.2, 398-407, 2022
Ultrasound-negative pressure cavitation extraction of paclitaxel from Taxus chinensis
An ultrasound-negative pressure cavitation extraction method was developed to remarkably improve the recovery efficiency of paclitaxel from Taxus chinensis. The paclitaxel yield was 94-100% through ultrasound-negative pressure cavitation extraction with an extraction time of 3 to 8min. In particular, most paclitaxel could be recovered within 3min of extraction at ultrasonic power of 380W/negative pressure of -260mmHg. Observation of the biomass surface with SEM before and after extraction showed that as the ultrasonic power and negative pressure increased, the surface was more disrupted. In addition, a pseudo-second order model was suitable for the kinetic analysis, and intraparticle diffusion played a dominant role in the overall extraction rate according to the intraparticle diffusion model. As the ultrasonic power and negative pressure increased, the extraction rate constant (6.8816-11.6105mL/mg·min), the effective diffusion coefficient (1.550 x 10-12-11.528 x 10-12m2/s), and the mass transfer coefficient (2.222 x 10-7-5.149 x 10-7 m/s) increased.
[References]
  1. Zhu L, Chen L, Cell. Mol. Biol. Lett., 24, 40, 2019
  2. Caillaud M, Patel NH, White A, et al., Brain Behav. Immun., 93, 172, 2021
  3. Jang YS, Kim JH, Biotechnol. Bioprocess Eng., 24, 529, 2019
  4. Ghorbani M, Pourjafar F, Saffari M, Asgari Y, Meta Gene, 26, 100800, 2020
  5. Sun T, Liu Y, Li M, Yu H, Piao H, Mol. Cell. Probes, 53, 101602, 2020
  6. Modarresi-Darreh B, Kamali K, Kalantar SM, Dehghanizadeh H, Aflatoonian B, Eurasia J. Biosci., 2, 413, 2018
  7. Pyo SH, Choi HJ, Han BH, J. Chromatogr. A, 1123, 15, 2006
  8. Kang HJ, Kim JH, Process Biochem., 99, 316, 2020
  9. Seo HW, Kim JH, Process Biochem., 87, 238, 2019
  10. Kim JH, Lim CB, Kang IS, Hong SS, Lee HS, Korean J. Biotechnol. Bioeng., 15, 337, 2000
  11. Kim GJ, Kim JH, Korean J. Chem. Eng., 32(6), 1023, 2015
  12. Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 25, 86, 2020
  13. Kang HJ, Kim JH, Korean J. Chem. Eng., 36(12), 1965, 2019
  14. Yoo KW, Kim JH, Biotechnol. Bioprocess Eng., 23, 532, 2018
  15. Kim JH, Korean Chem. Eng. Res., 58(2), 273, 2020
  16. Chen G Bu F, Chen X, Li C, Wang S, Kan J, Int. J. Biol. Macromol., 112, 655, 2018
  17. Rakshit M, Srivastav PP, J. Food Process. Preserv., 45, e15078, 2020
  18. Tang W, Wang B, Wang M, Wang M, J. Appl. Res. Med. Aromat. Plants, 25, 100331, 2021
  19. Upadhyay R, Nachiappan G, Mishra HN, Food Sci. Biotechnol., 24, 1951, 2015
  20. Filianty F, IOP Conf. Ser.: Earth Environ. Sci., 443, 012104, 2020
  21. Roohinejad S, Koubaa M, Barba FJ, Greiner R, Orlien V, Lebovka NI, Trends Food Sci. Technol., 52, 98, 2016
  22. Soria AC, Villamiel M, Trends Food Sci. Technol., 21, 323, 2010
  23. Tan Z, Li Q, Wang C, Zhou W, Yang Y, Wang H, Yi Y, Li F, Molecules, 22, 1483, 2017
  24. Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 24, 513, 2019
  25. Langergren S, Svenska BK, Veter. Hand., 24, 1, 1898
  26. Rakotondramasy-Rabesiaka L, Havet JL, Porte C, Fauduet H, Sep. Purif. Technol., 54(2), 253, 2007
  27. Ho YS, Harouna-Oumarou HA, Fauduet H, Porte C, Sep. Purif. Technol., 45(3), 169, 2005
  28. Weber WJ, Morris JC, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31, 1963
  29. Krishnan RY, Rajan KS, Sep. Purif. Technol., 157, 169, 2016
  30. Krishnan RY, Chandran MN, Vadivel V, Rajan KS, Sep. Purif. Technol., 170, 224, 2016
  31. Rakotondramasy-Rabesiaka L, Havet JL, Porte C, Fauduet H, Sep. Purif. Technol., 76(2), 126, 2010
  32. Wang G, Cui Q, Yin LJ, Li Y, Gao MZ, Meng Y, Li J, Zhang SD, Sep. Purif. Technol., 44, 115805, 2020
  33. Panda D, Manickam S, Appli. Sci., 9, 766, 2019
  34. Li S, Wang A, Liu L, Tian G, Xu F, Food Sci. Biotechnol., 28, 759, 2019
  35. Wang T, Guo N, Wang SX, Kou P, Zhao CJ, Fu YJ, Food Bioprod. Process., 108, 69, 2018
  36. Dular M, Pozar T, Zevnik J, Petkovsek R, Wear, 418-419, 13, 2019
  37. Kavitha D, Namasivayam C, Bioresour. Technol., 98(1), 14, 2007