Issue
Korean Journal of Chemical Engineering,
Vol.39, No.2, 353-366, 2022
A comparative study on the performance of highly conductive sulfonated poly(ether ether ketone) PEM modified by halloysite nanotubes, sulfonated polystyrene and phosphotungstic acid
Proton transfer is the most important task of proton exchange membranes (PEMs) for application in fuel cells. One vital disadvantage of currently used commercial Nafion membranes is the low proton conductivity at high temperatures. Therefore, the objective of this research was to increase the proton conductivity of PEMs based on sulfonated poly (ether ether ketone) (SPEEK). Herein, modification of SPEEK-based PEM was carried out using polydopamine- coated halloysite nanotubes (HNT) alone and in combination with sulfonated polystyrene (SPS) and phosphotungstic acid (PWA). In this method, poly (ether ether ketone) sulfonation process was performed under optimum operating conditions to create more sulfonic acid groups on its chains. Here, polydopamine was doped on the outer surface of HNT (DHNT) and employed as the additive to create additional proton transferring pathways in the membrane. The hydrophilicity of the modified nanotube was enhanced through silanization (named as DHNTS). Moreover, SPS and PWA were applied to improve the ability of protons to transfer through the proton barrier channels in the membrane. Performing the sulfonation of polystyrene in the solution phase was a novel approach in this study, which led to significant increase in the degree of sulfonation. The results showed that the SPEEK/DHNTS|SPS and SPEEK/DHNTS|PWA membranes in the presence of 15% weight ratio additives and 100% relative humidity exhibited 109% and 90% higher proton conductivity than the neat SPEEK membrane, respectively. Furthermore, 20% and 10% higher proton conductivity was observed for the aforementioned membranes compared to the commercial Nafion117 membrane. Because of the strong acid-base bonding between DHNTS and SPEEK and the sticky nature of polydopamine, the chemical stability of the modified PEMs was higher than the neat membrane. In terms of fuel cell performance, there was little difference between Nafion117 membrane and DHNTS-modified PEM. These modified membranes are therefore suitable alternatives to address the commercial Nafion membrane…s gap in the fuel cells.
[References]
  1. Lade H, Kumar V, Arthanareeswaran G, Ismail AF, Int. J. Hydrog. Energy, 42(2), 1063, 2017
  2. Millington B, Du SF, Pollet BG, J. Power Sources, 196(21), 9013, 2011
  3. Shi W, Baker LA, RSC Adv., 5, 99284, 2015
  4. Bano S, Negi YS, Ramya K, Int. J. Hydrog. Energy, 44(54), 28968, 2019
  5. Parnian MJ, Gashoul F, Rowshanzamir S, Iranian J. Hydrog. & Fuel Cell, 3, 221 (2017).
  6. Rana D, Mandal BM, Bhattacharyya SN, Polymer, 37(12), 2439, 1996
  7. Rana D, Bag K, Bhattacharyya SN, Mandal BM, J. Polym. Sci. B: Polym. Phys., 38(3), 369, 2000
  8. Liu X, He SJ, Song G, Jia HN, Shi ZZ, Liu SX, Zhang LQ, Lin J, Nazarenko S, J. Membr. Sci., 504, 206, 2016
  9. Zhang HQ, Ma CM, Wang JT, Wang XY, Bai HJ, Liu JD, Int. J. Hydrog. Energy, 39(2), 974, 2014
  10. Zeng J, Jiang SP, J. Phys. Chem. C, 115, 11854, 2011
  11. Melo L, Benavides R, Martinez G, Morales-Acosta D, Paula MMS, Da Silva L, Int. J. Hydrog. Energy, 42(34), 21880, 2017
  12. Gong CL, Zheng X, Liu H, Wang GJ, Cheng F, Zheng GW, Wen S, Law WC, Tsui CP, Tang CY, J. Power Sources, 325, 453, 2016
  13. Salarizadeh P, Javanbakht M, Pourmahdian S, Hazer MSA, Hooshyari K, Askari MB, Int. J. Hydrog. Energy, 44(5), 3099, 2019
  14. Hebbar RS, Isloor AM, Ananda K, Ismail AF, J. Mater. Chem., 4, 764, 2016
  15. Rico-Zavala A, Gurrola MP, Arriaga LG, Banuelos JA, Alvarez-Contreras L, Carbone A, Sacca A, Matera FV, Pedicini R, Alvarez A, Ledesma-Garcia J, Renew. Energy, 122, 163, 2018
  16. Samaei SHA, Bakeri G, Lashkenari MS, J. Appl. Polym. Sci., 138(20), 50430, 2021
  17. Salarizadeh P, Javanbakht M, Pourmahdian S, Solid State Ion., 281, 12, 2015
  18. Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T, in Organic-inorganic composite polymer electrolyte membranes, Springer, Cham. (2017).
  19. Rahimnejad M, Ghasemi M, Najafpour GD, Ismail M, Mohammad AW, Ghoreyshi AA, Hassan SHA, Electrochim. Acta, 85, 700, 2012
  20. Parnian MJ, Rowshanzamir S, Gashoul F, Energy, 125, 614, 2017
  21. Tang Y, Zhigang X, Xiaolin X, Xingping Z, Sens. Actuators A-Phys., 238, 167, 2016
  22. Bekri-Abbes I, Bayoudh S, Baklouti M, Papon E, LeClercq D, Prog. Rubber. Plast. Re., 22, 179, 2006
  23. Du L, Yan XM, He GH, Wu XM, Hu ZW, Wang YD, Int. J. Hydrog. Energy, 37(16), 11853, 2012
  24. Wu H, Shen XH, Cao Y, Li Z, Jiang ZY, J. Membr. Sci., 451, 74, 2014
  25. Zhang L, Sanjeev M, J. Electrochem. Soc., 153, 1062, 2006
  26. Dogan H, Inan TY, Unveren E, Kaya M, Int. J. Hydrog. Energy, 35(15), 7784, 2010
  27. Kim DJ, Choi DH, Park CH, Nam SY, Int. J. Hydrog. Energy, 41(13), 5793, 2016
  28. Xie Q, Li YF, Chen XJ, Hu J, Li L, Li HB, J. Power Sources, 282, 489, 2015
  29. De Leon-Condes CA, et al., J. Environ. Chem. Eng., 7, 102841, 2019
  30. Fukuhara L, Kado N, Kosugi K, Suksawad P, Yamamoto Y, Ishii H, Kawahara S, Solid State Ion., 268, 191, 2014
  31. Peng Y, Shen Y, Ge M, Pan Z, Chen W, Gong B, Food Chem., 275, 377, 2019
  32. Chen PP, Hao L, Wu WJ, Li YF, Wang JT, Electrochim. Acta, 212, 426, 2016
  33. He S, Dai W, Yang W, Liu S, Bain X, Zhang C, Lin J, Polym. Test, 73, 242, 2019
  34. Ayaz S, Yu HY, Polym. Test, 93, 106941, 2021
  35. Parnian MJ, Rowshanzamir S, Prasad AK, Advani SG, J. Membr. Sci., 556, 12, 2018
  36. Janik MJ, Davis RJ, Neurock M, J. Am. Chem. Soc., 127(14), 5238, 2005
  37. Zhang B, Cao Y, Li Z, Wu H, Yin YH, Cao L, He XY, Jiang ZY, Electrochim. Acta, 240, 186, 2017
  38. Wang JT, Bai HJ, Zhang HQ, Zhao LP, Chen HL, Li YF, Electrochim. Acta, 152, 443, 2015
  39. Chen J, Guo Q, Tong DLJ, Li X, Prog. Nat. Sci., 22, 26, 2012
  40. Ji Y, Tay ZY, Li SFY, J. Membr. Sci., 539, 197, 2017
  41. Mossayebi Zahra, Saririchi Taghiyeh, Rowshanzamir Soosan, Parnian Mohammad Javad, Int. J. Hydrog. Energy, 41(28), 12293, 2016
  42. Roy T, Wanchoo SK, Pal K, Solid State Ion., 349, 115296, 2020
  43. Rana D, Mandal BM, Bhattacharyya SN, Macromolecules, 29(5), 1579, 1996
  44. Rana D, Mandal BM, Bhattacharyya SN, Polymer, 34(7), 1454, 1993
  45. Kim AR, Vinothkannan M, Yoo DJ, Int. J. Hydrog. Energy, 42(7), 4349, 2017
  46. YuSafronova E, Golubenko DV, Shevlyakova NV, D'yakova MG, Tverskoi VA, Dammak L, Grande D, Yaroslavtsev AB, J. Membr. Sci., 515, 196, 2016
  47. Ressam I, El Kadib A, Lahcini M, Luinstra GA, Perrot H, Sel O, Int. J. Hydrog. Energy, 43(40), 18578, 2018