Issue
Korean Journal of Chemical Engineering,
Vol.39, No.2, 306-315, 2022
Study on mass transfer and heat transfer in transition zone of short-path distillation separation equipment based on N-dodecanol and N-hexadecanol
Based on the fact that the distance between the heat exchange surfaces has little influence on the separation efficiency in the short-path distillation, a hypothesis that the heat and mass transfer process in the transition region is controlled by heat convection is proposed; the gas-liquid state in the transition zone was calculated by numerical simulation experiment. The results show that the gas-liquid volume fraction and temperature fluctuation in the evaporation and condensation process is unstable, while the gas-liquid volume fraction and temperature fluctuation in the transition zone is stable in the short-path distillation process. It can be concluded that in unsteady thermodynamics, the transition zone is a stable convective heat transfer process that is not affected by the distance between heat transfer surfaces. Thus, under ideal conditions, the continuous extension of the transition region has little effect on the distillation efficiency.
[References]
  1. Fu J, Han X, Hu J, Xiong W, Wu L, The Food Ind., 41(09), 186, 2020
  2. Zhao G, Zhao Y, Lu L, Hou Z, Special Wild Economic Animal and Plant Research, 42(03), 53 (2020).
  3. Xu T, Han W, Mech. Electr. Inform., 3(08), 1, 2015
  4. Dong H, Wang R, Chem. Design Commun., 45(03), 55, 2019
  5. Sun X, Technol. Dev. Chem. Ind., 47(12), 35, 2018
  6. Zhu G, Petrolem Prod Appucation Res., 36(05), 76, 2018
  7. Tao Y, Li C, Wu W, Gao Y, Sci. Technol. Food Ind., 33(03), 429, 2012
  8. Li Y, Liu J, Cereals Oils, 1(03), 7, 2011
  9. Kawala Z, Stephan K, Chem. Eng. Technol., 12(1), 406, 1989
  10. Ren Y, Tianjin Univ (2006).
  11. Guo J, Su S, Li H, Han S, Qian D, Mod. Chinese Med., 15(01), 9, 2013
  12. Li H, Li Y, Hu C, Han J, Res. Explor. Lab., 31(07), 54, 2012
  13. Persad AH, Ward CA, Chem. Rev., 116(14), 7727, 2016
  14. Henry DJ, Dewan VI, Prime EL, Qiao GG, Solomon DH, Yarovsky I, J. Phys. Chem. B, 114(11), 3869, 2010
  15. Liang Z, Keblinski P, The J. Chem. Phys., 148(6), 064708, 2018
  16. Liang Z, Biben T, Keblinski P, Int. J. Heat Mass Transf., 114, 105, 2017
  17. Liang Z, Chandra A, Brid E, Keblinski P, Int. J. Heat Mass Transf., 149, 119, 2020
  18. Wang Z, Tsinghua Univ (2002).
  19. Gu Y, Ge S, Chen M, Mol. Phys., 114(12), 1922, 2016
  20. Ge S, Gu Y, Chen M, Mol. Phys., 113(7), 703, 2015
  21. Kumar R, Lee YK, Jho YS, Int. J. Mol. Sci., 31(13), 4602, 2020
  22. Roel-Touris J, Bonvin AMJJ, Comput. Struct. Biotec., 18, 1182, 2020
  23. Beu TA, Ailenei AE, Costinas RI, J. Comput. Chem., 41(4), 349, 2020
  24. Shivgan AT, Marzinek JK, Huber RG, J. Chem. Inf. Model, 60, 3864, 2020
  25. Tang Y, Zhang X, Lin Y, Xue J, He Y, Ma L, Adv. Theor. Simul., 2(8), 190006, 2019
  26. Qun C, Wei S, Zheng C, Int. J. Heat Mass Transf., 153, 119616, 2020
  27. Wang P, China Univ Petroleum (East China) (2013).
  28. Xing H, J. Wuhan Inst. Chem. Technol., 27(01), 72, 2005