Issue
Korean Journal of Chemical Engineering,
Vol.39, No.2, 284-305, 2022
Combinatorial and geometric optimization of a parabolic trough solar collector
The current investigation reveals the need for combinatorial and geometric optimization for parabolic trough solar collectors (PTSCs) and proposes methods to perform them. An analytical model of PTSC was drafted, which emerged to be quite accurate when exhaustively validated using experimental results. The analysis reveals that superior properties of design components (solar selective absorber coatings (SSACs), heat transfer fluids (HTFs), etc.) cannot guarantee better performance, as there are many interacting factors. Also, a particular combination of components can perform better at a certain temperature while lagging at another. To acquire an optimal combination of components, combinatorial optimization is introduced and carried out for PTSCs, using genetic algorithm (GA). Six SSACs, three absorber materials, and five HTFs are considered, significant efficiency improvements of 8% at 150 °C and 6% at 300 °C are observed. This study discloses that geometrical parameters (length and width of collector, focal length, etc.) possess positive as well negative impacts on efficiency. By varying these in a reasonable range, optimal values that lead to improved efficiency can be obtained. Particle swarm optimization (PSO) is used to attain this geometric optimization, and improvement of ≥3% in efficiency is noticed by only ±5% variation in dimensions.
[References]
  1. Jebasingh VK, Herbert GMJ, Renew. Sust. Energ. Rev., 54, 1085, 2016
  2. Goel A, Manik G, Mahadeva R, Advances in intelligent systems and computing, Springer, Singapore (2020).
  3. Kalogirou S, Appl. Energy, 76(4), 337, 2003
  4. Silva R, Javier CF, Perez-garcia M, Energy Procedia., 48, 1210, 2014
  5. Verma OP, Manik G, Mohammed TH, Korean J. Chem. Eng., 34(10), 2570, 2017
  6. Fernandez-Garcia A, Zarza E, Valenzuela L, Perez M, Renew. Sust. Energ. Rev., 14, 1695, 2010
  7. Ajbar W, Parrales A, Cruz-Jacobo U, Conde-Gutierrez RA, Bassam A, Jaramillo OJ, Hernandez JA, Appl. Therm. Eng., 189, 116651, 2021
  8. Habibi H, Zoghi M, Chitsaz A, Shamsaiee M, Appl. Therm. Eng., 180, 115827, 2020
  9. Liu QB, Yang ML, Lei J, Jin HG, Gao ZC, Wang YL, Sol. Energy, 86(7), 1973, 2012
  10. Zadeh PM, Sokhansefat T, Kasaeian AB, Kowsary F, Akbarzadeh A, Energy, 82, 857, 2015
  11. Boukelia TE, Arslan O, Mecibah MS, Appl. Therm. Eng., 107, 1210, 2016
  12. Silva R, Berenguel M, Perez M, Fernandez-Garcia A, Appl. Energy, 113, 603, 2014
  13. Wang W, Li M, Hassanien RHE, Ji ME, Feng Z, Int. J. Green Energy, 14, 819, 2017
  14. Tzuc OM, Bassam A, Soberanis MAE, et al., J. Renew. Sustain. Energy, 9, 1, 2017
  15. Bellos E, Tzivanidis C, Energy, 149, 47, 2018
  16. Hoseinzadeh H, Kasaeian A, Shafii MB, Energy Sci. Eng., 7, 2950, 2019
  17. Ehyaei MA, Ahmadi A, El Haj Assad M, Salameh T, J. Clean Prod., 234, 285, 2019
  18. Cheng ZD, He YL, Du BC, Wang K, Liang Q, Appl. Energy, 148, 282, 2015
  19. Lopez-Martin R, Valenzuela L, Case Stud. Therm. Eng., 12, 414, 2018
  20. Forristall R, Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver, NREL/TP-550-34169 (2003).
  21. Duffie JA, Beckman WA, Solar engineering of thermal processes, 4th Ed., John Wiley & Sons, Inc. (2013).
  22. Dudley VE, Kolb GJ, Sloan M, Kearney D, Test results -SEGS LS2 collector. Sandia National Laboratories (1994).
  23. Dudley VE, Evans LR, Matthews CW, Test results, Industrial Solar Technology parabolic trough solar collector (1995).
  24. Valenzuela L, Lopez-Martin R, Zarza E, Energy, 70, 456, 2014
  25. Lippke F, Simulation of the part-load behaviour of a 30MW SEGS plant (1995).
  26. Incropera F, Dewitt D, Fundamentals of heat and mass transfer, 6th Ed., John Wiley & Sons (2006).
  27. Cengel YA, Ghajar AJ, Heat and mass transfer, 5th Ed., McGraw-Hill Education (2015).
  28. Swinbank WC, Q. J. R. Meteorol. Soc., 89, 339, 1963
  29. Rohsenow WM, Hartnett JR, Handbook of heat transfer, 3rd Ed., McGraw-Hill Education (1999).
  30. Gnielinski V, Int. J. Heat Mass Transf., 63, 134, 2013
  31. Ratzel AC, Hickox CE, Gartling DK, J. Heat Transf. Trans ASME, 101, 108, 1979
  32. Kuehn TH, Goldstein RJ, Int. J. Heat Mass Transf., 19, 1127, 1976
  33. Churchill SW, Usagi R, AIChE J., 18, 1121, 1972
  34. Morgan VT, Adv. Heat Transf., 11, 199, 1975
  35. Yilmaz IH, Soylemez MS, Energy Conv. Manag., 88, 768, 2014
  36. Padilla RV, Simplified methodology for designing parabolic trough solar power plants, University of South Florida (2011).
  37. Aguilar R, Valenzuela L, Avila-Marin AL, Garcia-Ybarra PL, Energy Conv. Manag., 196, 807, 2019
  38. Sivanandam SN, Deepa SN, Principles of soft computing, Wiley India Pvt. Ltd, New Delhi (2017).
  39. Valencia JJ, Quested PN, Thermophysical Properties, in: ASM Handb., ASM international, 468 (2008).
  40. Dow Corning Corporation, SYLTHERM 800 Heat Transfer Fluid: Product Technical Data, 1997. http://www.dow.com/heattrans.
  41. Eastman, Therminol VP-1, Technical Bulletin TF9141, 2019. https://www.eastman.com/Literature_Center/T/TF9141.pdf.
  42. HEAT TRANSFER FLUIDS XCELTHERM ® 600 - Engineering Properties (2015).
  43. Fluid HT, DOWTHERM J Heat Transfer Fluid, 1 (1977).
  44. Heat S, Conductivity T, Pressure V, PARATHERMTM HR SYNTHETIC-AROMATIC HEAT, 1 (2020).
  45. Hojjati A, Monadi M, Faridhosseini A, Mohammadi M, J. Hydrol. Hydromechanics, 66, 323, 2018
  46. Kennedy J, Eberhart R, Particle swarm optimization, in: Proc. ICNN'95 - Int. Conf. Neural Networks, IEEE, n.d.: pp. 1942-1948.
  47. Kumar M, Sharma SC, Goel S, Mishra SK, Husain A, Neural Comput. Appl., 32, 18285, 2020
  48. Shi Y, Russell Eberhart, A modified particle swarm optimizer algorithm, 2007 8th Int. Conf. Electron. Meas. Instruments, ICEMI.
  49. Van Den Bergh F, Engelbrecht AP, Inf. Sci., 176, 937, 2006
  50. Eberhart RC, Shi Y, Comparing inertia weights and constriction factors in particle swarm optimization, Proc. 2000 Congr. Evol. Comput. CEC 2000.