Issue
Korean Journal of Chemical Engineering,
Vol.39, No.2, 263-274, 2022
Temperature driven internal heat integration in an energy-efficient partial double annular column
This study presents a strategy for the internal heat integration of reactive distillation (RD) columns for concurrently producing 2-ethylhexyl dodecanoate and methyl dodecanoate. Because of a significant temperature difference in the two reactions, the two RD column process with each single reaction occurring in the respective column has lower energy consumption than the direct sequence consisting of one RD column followed by a non-RD column. Thus, internal heat integration in a partial double annular configuration is introduced on the basis of the two RD column process. In the new annular RD configuration, heat is transferred from the outer column shell having a high-temperature exothermic reaction to the inner shell with a low-temperature endothermic reaction. By using the concept of pinch temperature, we determine the heat transfer stages to secure sufficient temperature driving force. For the same product purity and reaction extent, the internal heat integrated distillation column (HIDiC) shows lower internal flowrate and energy consumption than the other sequences of the direct sequence and the reactive dividing wall column (RDWC). The total utility consumption of the HIDiC with a partial double annular structure was reduced by 15.4% and 14.4% compared to the direct sequence and the RDWC, respectively.
[References]
  1. Gomez-Castro FI, Rico-Ramirez V, Segovia-Hernandez JG, Hernandez S, Chem. Eng. Process. Process Intensif., 49, 262, 2010
  2. Kim GM, Choi WY, Park JH, Jeong SJ, Hong JE, Jung W, Lee JW, ACS Appl. Nano Mater., 3, 8592, 2020
  3. Long NVD, Lee DY, Han TH, Park SY, Bong HB, Lee MY, Korean J. Chem. Eng., 37(11), 1823, 2020
  4. Galanido RJ, Kim DS, Cho JH, Korean J. Chem. Eng., 37(5), 850, 2020
  5. Jiang ZY, Agrawal R, Chem. Eng. Res. Des., 147, 122, 2019
  6. Malone MF, Doherty MF, Ind. Eng. Chem. Res., 39, 3953, 2000
  7. Kiss AA, Jobson M, Gao X, Ind. Eng. Chem. Res., 58(15), 5909, 2019
  8. Lee JW, Hauan S, Westerberg AW, Ind. Eng. Chem. Res., 39(4), 1061, 2000
  9. Lee JW, Westerberg AW, AIChE J., 47(6), 1333, 2001
  10. Huss RS, Chen FR, Malone MF, Doherty MF, Comput. Chem. Eng., 27(12), 1855, 2003
  11. Gadewar SB, Malone MF, Doherty MF, Ind. Eng. Chem. Res., 46(10), 3255, 2007
  12. Lee JW, Hauan S, Westerberg AW, AIChE J., 46(6), 1218, 2000
  13. Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1953, 2000
  14. Lee JW, Hauan S, Lien KM, Westerberg AW, Proc. R. Soc. A, 456, 1965, 2000
  15. Dejanovic I, Matijasevic L, Olujic Z, Chem. Eng. Process., 49(6), 559, 2010
  16. Yildirim O, Kiss AA, Kenig EY, Sep. Purif. Technol., 80(3), 403, 2011
  17. Jiang W, Lee H, Han JI, Lee JW, Ind. Eng. Chem. Res., 58(19), 8206, 2019
  18. Jang W, Namgung K, Lee H, Mo H, Lee JW, Ind. Eng. Chem. Res., 59(5), 1966, 2020
  19. Mueller I, Kenig EY, Ind. Eng. Chem. Res., 46(11), 3709, 2007
  20. Novita FJ, Lee HY, Lee MY, Korean J. Chem. Eng., 35(4), 926, 2018
  21. Feng SY, Ye Q, Xia H, Li R, Suo XM, Chem. Eng. Res. Des., 125, 204, 2017
  22. Yang A, Sun SR, Eslamimanesh A, Wei SA, Shen WF, Energy, 172, 320, 2019
  23. Namgung K, Lee H, Jang W, Mo H, Lee JW, Chem. Eng. Process. Process Intensif., 154, 108048, 2020
  24. Mo HR, Lee HC, Jang WJ, Kwon NU, Lee JW, Korean J. Chem. Eng., 38(1), 195, 2021
  25. Harwardt A, Marquardt W, AIChE J., 58(12), 3740, 2012
  26. Lee HC, Jang WJ, Lee JW, Korean J. Chem. Eng., 36(6), 954, 2019
  27. Fang J, Cheng XM, Li ZY, Li H, Li CL, Chin. J. Chem. Eng., 27(6), 1272, 2019
  28. Gadalla M, Jimenez L, Olujic Z, Jansens PJ, Comput. Chem. Eng., 31(10), 1346, 2007
  29. Glenchur T, Govind R, Sep. Sci. Technol., 22, 2323, 1987
  30. Naito K, Nakaiwa M, Huang K, Endo A, Aso K, Nakanishi T, Nakamura T, Noda H, Takamatsu T, Comput. Chem. Eng., 24(2-7), 495, 2000
  31. Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T, Chem. Eng. Res. Des., 81(1), 162, 2003
  32. Lee H, Mo H, Namgung K, Jang W, Lee JW, Ind. Eng. Chem. Res., 59(32), 14398, 2020
  33. Omota F, Dimian AC, Bliek A, Chem. Eng. Sci., 58(14), 3159, 2003
  34. Omota F, Dimian AC, Bliek A, Chem. Eng. Sci., 58(14), 3175, 2003
  35. Steinigeweg S, Gmehling J, Ind. Eng. Chem. Res., 42(15), 3612, 2003
  36. Hino M, Kurashige M, Matsuhashi H, Arata K, Thermochim. Acta, 441(1), 35, 2006
  37. Alves-Rosa MA, Martins L, Hammer P, Pulcinelli SH, Santilli, RSC Adv., 6, 6686, 2016
  38. Lamba R, Kumar S, Sarkar S, Chem. Eng. Commun., 205(3), 281, 2018
  39. Doherty MF, Chem. Eng. Sci., 40, 1885, 1985
  40. Wu YC, Lee HY, Tsai CY, Huang HP, Chien IL, Comput. Chem. Eng., 57, 63, 2013
  41. van Genderen ACG, van Miltenburg JC, Blok JG, van Bommel MJ, van Ekeren PJ, van den Berg GJK, Oonk HAJ, Fluid Phase Equilib., 202(1), 109, 2002
  42. Kiss AA, Olujic Z, Chem. Eng. Process., 86, 125, 2014
  43. Linnhoff B, Hindmarsh E, Chem. Eng. Sci., 38, 745, 1983
  44. Gadalla M, Olujic Z, Sun L, De Rijke A, Jansens PJ, Chem. Eng. Res. Des., 83(A8), 987, 2005
  45. Li BH, Castillo YEC, Chang CT, Chem. Eng. Res. Des., 148, 260, 2019
  46. Li BH, Chang CT, Ind. Eng. Chem. Res., 49(8), 3967, 2010
  47. Luyben WL, Distillation design and control using aspen simulation, John Wiley & Sons, Hoboken, New Jersey (2013).