Issue
Korean Journal of Chemical Engineering,
Vol.39, No.2, 251-262, 2022
The present condition and outlook for hydrogen-natural gas blending technology
Koren's economy should develop a safe and cost-effective hydrogen transport system to realize the hydrogen economy. Among the methods of hydrogen transport, pipelines are the only feasible means of achieving cost-effective and safe transport over longer distances. This technical report proposes a method that would allow for using existing natural gas pipelines to transport mixed gas (hydrogen-natural gas). The properties of the mixed gas, the durability of the pipeline caused by hydrogen embrittlement, and gas loss from leakage are reviewed according to the hydrogen ratio. In addition, several separation methods of mixed gas are introduced. From the survey of international research or pilot projects, if hydrogen is blended with a concentration less than 20%, that does not significantly affect gas quality, safety, risk, materials, and network capacity. This study also suggests the suitable hydrogen supply methods for domestic use.
[References]
  1. IEA, Global hydrogen demand by sector in the Sustainable Development Scenario, Paris (2020).
  2. Hydrogen Council, Hydrogen scaling up (2017).
  3. Moon B, Lee WS, Lee YS, KIGAS, 25, 1, 2021
  4. Ryi SK, Han JY, Kim CH, Lim HW, Jung HY, Clean Technol., 23(2), 121, 2017
  5. Ashik UPM, Daud WW, Abbas HF, Renew. Sust. Energ. Rev., 44, 221, 2015
  6. IEA, World Energy Outlook 2015, Paris (2015).
  7. Heracleous E, Int. J. Hydrog. Energy, 36(18), 11501, 2011
  8. Rodl A, Wulf C, Kaltschmitt M, In Hydrogen Supply Chains, 3, 81 (2018).
  9. Sharma S, Ghoshal SK, Renew. Sust. Energ. Rev., 43, 1151, 2015
  10. Yang C, Ogden J, Int. J. Energy Res., 32, 268, 2007
  11. Hugo A, Rutter P, Pistikopoulos S, Amorelli A, Zoia G, Int. J. Energy Res., 30, 1523, 2005
  12. Konda NM, Shah N, Brandon NP, Int. J. Energy Res., 36, 461, 2011
  13. Rodl A, Wulf C, Kaltschmitt M, In Hydrogen Supply Chains, 2, 37 (2018).
  14. Kim J, Moon I, Int. J. Hydrog. Energy, 33(21), 5887, 2008
  15. Haeseldonckx D, D'haeseleer W, Int. J. Hydrog. Energy, 36(8), 4636, 2011
  16. Rodl A, Wulf C, Kaltschmitt M, In Hydrogen Supply Chains, 6, 207 (2018).
  17. http://www.h2news.kr/news/article.html?no=7664 (accessed June 30, 2021).
  18. National Research Council, National Academies Press, USA (2004).
  19. U.S. Drive., Hydrogen delivery roadmap, USA (2017).
  20. Grasso N, Pilo F, Ciannelli N, Carcassi MN, Mattei N, Ceccherini F, Int. J. Hydrog. Energy, 34, 4678, 2009
  21. https://www.thechemicalengineer.com/features/hydrogen-transport/(accessed June 30, 2021).
  22. HyARC, Hydrogen Pipelines., h2tools (2017).
  23. http://www.h2news.kr/mobile/article.html?no=8554 (accessed June 30, 2021).
  24. DOE, Hydrogen delivery infrastructure analysis, USA (2013).
  25. Stalheim DG, Barnes KR, Mccutcheon DB, CBMM/TMS (2006).
  26. Capelle J, Gilgert J, Dmytrakh I, Pluvinage G, Int. J. Hydrog. Energy, 33(24), 7630, 2008
  27. Hardie D, Charles EA, Lopez AH, Corrosion Sci., 48, 4378, 2006
  28. Fekete JR, Sowards JW, Amaro RL, Int. J. Hydrog. Energy, 40(33), 10547, 2015
  29. https://www.kogas.or.kr:9450/portal/contents.do?key=2015#self(accessed June 30, 2021).
  30. https://www.eia.gov/energyexplained/natural-gas/natural-gas-pipelines.php (accessed June 30, 2021).
  31. U.S. Energy Information Administration, Annual Energy Outlook, EIA (2021).
  32. Messaoudani Zine Labidine, Rigas Fotis, Hamid Mahar Diana Binti, Hassan Che Rosmani Che, Int. J. Hydrog. Energy, 41(39), 17511, 2016
  33. Haeseldonckx D, D'haeseleer W, Int. J. Hydrog. Energy, 32(10-11), 1381, 2007
  34. IET, Techno-economic assessment of hydrogen transmission & distribution systems in Europe in the medium and long term, Netherlands (2005).
  35. Rusin A, Stolecka K, J. Loss Prev. Process Ind., 33, 77, 2015
  36. Tabkhi F, Azzaro-Pantel C, Pibouleau L, Domenech S, Int. J. Hydrog. Energy, 33(21), 6222, 2008
  37. NREL, Blending hydrogen into natural gas pipeline networks: A Review of key issues, USA (2013).
  38. Authority ER, Gas Exchangeability in Western Australia, Australia (2007).
  39. Energy Pipelines CRC, Australia (2017).
  40. GPA Engineering, Hydrogen in the gas distribution networks, Australia (2019).
  41. Altfeld K, Pinchbeck D, Gas Energy, 2103, 1, 2013
  42. https://www.greentechmedia.com/articles/read/green-hydrogen-innatural-gas-pipelines-decarbonization-solution-or-pipe-dream(accessed June 30, 2021).
  43. Joo YJ, Kim MY, Park JG, Park SI, Shin JG, KHNES, 31, 351, 2020
  44. Meng B, Gu C, Zhang L, Zhou C, Zhao YZ, Zheng J, Hand Y, International Conference on Hydrogen Safety, China (2015).
  45. Kuczynski S, Laciak M, Olijnyk A, Szurlej A, Wloderk T, Energies, 12, 569, 2019
  46. Jaworski J, Kułaga P, Blacharski T, Energies, 13, 3006, 2020
  47. Fekete JR, Sowards JW, Amaro RL, Int. J. Hydrog. Energy, 40(33), 10547, 2015
  48. Gangloff RP, Somerday BP, Gaseous hydrogen embrittlement of materials in energy technologies: the problem, Woodhead Publishing, UK (2012).
  49. PG&E, Hydrogen Technical Analysis, USA (2018).
  50. Rigas F, Amyotte P, Chem. Eng. Trans., 31, 913, 2013
  51. Polman EA, De Laat JC, Crowther M, IEA Green House Gas R&D programme (2003).
  52. Soudani M, Meliani MH, El-Miloudi K, Bouledroua O, Fares C, Benghalia MA, Pluvinag G, J. Bio-and Tribo-Corrosion, 4, 1 (2018).
  53. Verma C, Quraishi M, Singh A, J. Taibah Univ. Sci., 10, 718, 2016
  54. Mobin A, Zehra S, Parveen M, J. Mol. Liq., 216, 598, 2016
  55. https://internalpipeline.com/ (accessed June 30, 2021).
  56. Eliyan FF, Eliyan A, Recent aspects of oil and gas internal pipeline corrosion control, Switzerland (2021).
  57. https://www.yna.co.kr/view/AKR20190704095651062 (accessed June 30, 2021).
  58. https://www.h2news.kr/mobile/article.html?no=7651 (accessed June 30, 2021).
  59. Tommy I, Clean Energy, 3, 114, 2019
  60. PG&E, Pipeline Hydrogen, USA (2018).
  61. Liemberger W, Groß M, Miltner M, Harasek M, J. Clean Prod., 167, 896, 2017
  62. Streb A, Mazzotti M, Adsorption, 27, 559, 2021
  63. Vu DQ, Koros WJ, Miller SJ, J. Membr. Sci., 211(2), 335, 2003
  64. Schorer L, Schmitz S, Weber A, Int. J. Hydrog. Energy, 44(25), 12708, 2019
  65. Yin H, Yip AC, Catalysts, 7, 297, 2017
  66. Zornoza B, Casado C, Navajas A, Advances in hydrogen separation and purification with membrane technology, Elsevier, Netherlands (2013).
  67. Freeman B, Yampolskii Y, Pinnau I, Materials science of membranes for gas and vapor separation, John Wiley & Sons (2006).
  68. Cao L, Iris KM, Xiong X, Tsang DC, Zhang S, Clark JH, Ok YS, Environ. Res., 186, 109547, 2020
  69. Rhandi M, Tregaro M, Druart F, Deseure J, Chatenet M, Chinese J. Catal., 41, 756, 2020
  70. Vermaak L, Neomagus HW, Bessarabov DG, Membranes, 11, 127, 2021
  71. Grigoriev SA, Shtatniy IG, Millet P, Porembsky VI, Fateev VN, Int. J. Hydrog. Energy, 36(6), 4148, 2011
  72. Pulyalina A, Polotskaya G, Rostovtseva V, Pientka Z, Toikka A, Polymers, 10, 828, 2018
  73. Li L, Xu R, Song C, Zhang B, Liu Q, Wang T, Membranes, 8, 134, 2018
  74. https://www.eon.com/en/about-us/media/press-release/2020/uniqueproject-in-germany-natural-gas-pipeline-is-converted-to-purehydrogen.html (accessed June 30, 2021).
  75. https://www.dvgw.de/themen/forschung-und-innovation/forschungsprojekte/dvgw-forschungsprojekt-h2-20/ (accessed June 30, 2021).
  76. http://www.h2news.kr/news/article.html?no=8590 (accessed June 30, 2021).
  77. ttps://www.eon.com/en/business-customers/hydrogen-rediscovery-of-the-oldest-element.html (accessed June 30, 2021).
  78. http://www.h2news.kr/news/article.html?no=8761 (accessed June 30, 2021).
  79. https://www.prnewswire.com/news-releases/socalgas-and-sdgeannounce-groundbreaking-hydrogen-blending-demonstrationprogram-to-help-reduce-carbon-emissions-301178982.html (accessed June 30, 2021).
  80. https://www.socalgas.com/clean-energy/renewable-gas/power-togas (accessed June 30, https://www.socalgas.com/clean-energy/renewable-gas/power-togas(accessed June 30, 2021).2021).
  81. INIS, Technical and economic conditions for injecting hydrogen into natural gas networks, France (2019).
  82. https://www.engie.com/en/businesses/gas/hydrogen/power-to-gas/the-grhyd-demonstration-project (accessed June 30, 2021).
  83. https://www.australiangasnetworks.com.au/our-business/about-us/media-releases/australian-first-hydrogen-pilot-plant-to-be-built-inadelaide(accessed June 30, 2021).
  84. https://www.australiangasnetworks.com.au/hyp-sa (accessed June 30, 2021).
  85. https://www.australiangasnetworks.com.au/hyp-gladstone (accessed June 30, 2021).
  86. https://www.h2news.kr/news/article.html?no=8034 (accessed June 30, 2021).
  87. https://www.atco.com/en-ca/about-us/news/2020/122900-atco-tobuild-alberta-s-first-hydrogen-blending-project-with-era.html (accessed June 30, 2021).
  88. https://www.atco.com/en-ca/for-home/natural-gas/hydrogen.html (accessed June 30, 2021).
  89. IGRC, Hydrogen injection in natural gas on island of ameland in the Netherlands, Netherland (2011).