Issue
Korean Journal of Chemical Engineering,
Vol.39, No.1, 167-177, 2022
A comprehensive study on enhancement of lipid yield from Tetradesmus obliquus MT188616.1
Microalgae are known to produce neutral-lipids such as triacylglycerols (TAGs), a raw material required for biofuel production. The present study aimed to screen the high lipid producing native microalgae strains from freshwater habitats, select appropriate methods to extract lipid from wet algal biomass, and study fatty acid compositions. At first, isolated twenty native strains among them two isolates that exhibited higher lipid content was further subjected to molecular characterization. Results based on the cell morphology, molecular characterization, and phylogenetic analysis indicated that these two strains were Tetradesmus obliquus and Ettlia oleoabundans. Based on the growth study of screened algal strains, the biomass ranged from 0.65 g/L to 6.03 g/L with Tetradesmus obliquus providing the highest biomass and total lipid content of 51% when cultured in a nitrogen-deprived medium. The highest lipid yield was obtained with hexane:isopropanol (2 : 1) solvent mixtures, accompanied by an optimized cell wall disruption method. Additionally, it was found that Tetradesmus obliquus had higher contents of saturated and monounsaturated fatty acids, i.e., 36.19% and 31.49%, respectively, in nitrogen-deprived medium (N?), whereas in nitrogen-containing medium (N+) was 27.34% and 28.85%, respectively. Hence, this suggests their suitability for biofuel production.
[References]
  1. Chisti Y, Biotechnol. Adv., 25, 294, 2007
  2. Liam B, Philip O, Renew. Sust. Energ. Rev., 2, 557, 2010
  3. Mairet F, Bernard O, Masci P, Lacour T, Sciandra A, Bioresour. Technol., 1, 142, 2011
  4. Singh J, Gu S, Renew. Sust. Energ. Rev., 9, 2596, 2010
  5. Liu AY, Chen W, Zheng LL, Song LR, Progr. Natur. Sci. Mater. Intern., 21, 269, 2011
  6. Li X, Hu HY, Gan K, Sun YX, Bioresour. Technol., 101(14), 5494, 2010
  7. Yeh KL, Chang JS, Biotechnol. J., 6, 1358, 2011
  8. Karim AM, et al., Microalgae cultivation for biofuels production chapter 9, Academic Press Publication-Elsevier, New York (2020).
  9. Li Y, Naghdi FG, Garg S, Vega TCA, Thurecht KJ, Ghafor WA, Tannock S, Schenk PM, Microb. Cell. Factor, 13, 14, 2014
  10. Wawrik B, Harriman BH, J. Microbiol. Methods, 80, 262, 2010
  11. De la Vega M, Diaz E, Vila M, Leon R, Biotech. Progr., 27, 1535, 2011
  12. Sherwood AR, J. Phyc., 43, 1104, 2007
  13. Jazzar S, Medina JQ, Carrillo PO, Marzouki MN, Fernandez FGA, Sevilla JMF, Grima EM, Smaali I, Biores. Technol., 190, 281, 2015
  14. Guillard RRL, Sieracki MS, in Algal culturing techniques, Elsevier Academic Press (2005).
  15. Chen Y, Vaidyanathan S, Anal. Chim. Acta, 724, 67, 2012
  16. Kim J, Yoo G, Lee H, Lim J, Kim K, Kikm CW, Park MS, Yang JW, Biotechnol. Adv., 31, 862, 2013
  17. Kumar RR, Rao PH, Arumugam M, Front. Energ. Res., 2, 1, 2015
  18. Fletcher MJ, Clin Chim. Acta, 22, 393, 1968
  19. Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z, Biores. Technol., 152, 292, 2014
  20. Gouveia L, Oliveira AC, J. Indus. Microb. Biotech., 36, 269, 2008
  21. Sathya S, Srisudha S, Int. J. Rec. Sci. Res., 4, 1432, 2013
  22. Dayananda C, Kumudha A, Sarada R, Ravishankar GA, Scient. Res. Ess., 5, 2497, 2010
  23. Yu Z, Pei HY, Jiang LQ, Hou QJ, Nie CL, Zhang LJ, Bioresour. Technol., 247, 904, 2018
  24. Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, Mishra S, Bioresour. Technol., 156, 146, 2014
  25. Jia J, Han D, Gerken HG, Li Y, Sommerfeld M, Hu Q, Xu J, Algal. Res., 7, 66, 2015
  26. Qi F, Pei HY, Ma GX, Zhang S, Mu RM, Energy Conv. Manag., 129, 100, 2016
  27. Vanitha A, Narayan MS, Murthy KNC, Ravishankar GA, Int. J. Food Sci. Nutr., 58, 373, 2007
  28. Damiani MC, Popovich CA, Constenla D, Leonardi PI, Bioresour. Technol., 101(11), 3801, 2010
  29. Bougaran G, Rouxel C, Dubois N, Kaas R, Grouas S, Lukomska E, Le Coz JR, Cadoret JP, Biotechnol. Bioeng., 109(11), 2737, 2012
  30. Bona F, Capuzzo A, Franchino M, Maffei ME, Algal. Res., 5, 1, 2014
  31. Ma YB, Wang ZY, Yu CJ, Yin YH, Zhou GK, Bioresour. Technol., 167, 503, 2014
  32. Yu HT, Tian FL, Wang HY, Hu YH, Sheng WL, Adv. Mater. Res., 953, 281, 2014
  33. Du Y, Schuur B, Kersten SRA, Brilman DWF, Algal. Res., 11, 271, 2015
  34. Byreddy AR, Gupta A, Barrow CJ, Puri M, Mar. Drugs, 13, 5111, 2015
  35. Ramluckan K, Moodley KG, Bux F, Fuel, 116, 103, 2014
  36. Lewis T, Nichols PD, McMeekin TA, J. Microbiol. Methods, 43, 107, 2000
  37. Ryckebosch E, Muylaert K, Foubert I, J. Am. Oil. Chem. Soc., 89, 189, 2012
  38. Folch J, Lees M, Sloane-Stanley GH, J. Biol. Chem., 226, 497, 1957
  39. Bligh EG, Dyer WJ, Can. J. Biochem. Physiol., 37, 911, 1959
  40. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D, J. Lipid Res., 49, 1137, 2008
  41. Sheng J, Vannela R, Rittrnann BE, Bioresour. Technol., 102(2), 1697, 2011
  42. Li T, Xu J, Wu H, Wang G, Dai S, Fan J, He H, Xiang W, Mar. Drugs, 14, 162, 2016
  43. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM, Bioresour. Technol., 101, S75, 2010
  44. Zheng HL, Yin JL, Gao Z, Huang H, Ji XJ, Dou C, Appl. Biochem. Biotechnol., 164(7), 1215, 2011
  45. Prabakaran P, Ravindran AD, Lett. Appl. Microbiol., 53, 150, 2011
  46. Rakesh S, Dhar DW, Prasanna R, Saxena AK, Saha S, Shukla M, Sharma K, Eng. Life. Sci., 1 (2015).
  47. Halim R, Harun R, Danquah MK, Webley PA, Appl. Energy, 91(1), 116, 2012
  48. Singh K, Kaloni D, Gaur S, Kushwaha S, Mathur G, Biofuels, 11, 1, 2020
  49. Shao Y, Fang H, Zhou H, Wang Q, Zhu Y, He Y, Biotechnol. Biofuels, 10, 300, 2017