Issue
Korean Journal of Chemical Engineering,
Vol.39, No.1, 109-115, 2022
Coupling of nitrobenzene hydrogenation and 1, 4-butanediol dehydrogenation for the simultaneous synthesis of aniline and γ-butyrolactone over copper-based catalysts
This study examined the role of the support material on the coupling of 1,4-butanediol (BDO) dehydrogenation and nitrobenzene (NB) hydrogenation over copper-based catalysts. The catalysts, 10Cu/MgO (10CM), 10Cu/ Al2O3 (10CA), 10Cu/MgO-Al2O3 (10CMA), and 10Cu/SiO2 (10CS), were prepared using the impregnation method. The coupling reaction results conducted at 250 °C were compared with those of the individual reactions. The individual BDO dehydrogenation to γ-butyrolactone (GBL) conversion (99%) and hydrogenation of NB to aniline (AN) conversion (85 %) were high over 10CS. In contrast, 10CA produced tetrahydrofuran (THF) as a major product from BDO. Interestingly, the coupling process over the 10CM catalyst produced the best performance in converting NB (65%) to AN (99%) and BDO (85%) to GBL (99%). The superior performance of Cu/MgO in coupling process catalyst is mainly due to the high hydrogen adsorption ability compared to the other catalysts under limited hydrogen environments, which helps retain the active hydrogen on the catalyst surface for a longer time. The characterization of the catalysts showed that a high basic nature and the optimal amount of active copper sites (Cu0/Cu1+) are responsible for the best performance of 10CM, followed by 10CS and 10CMA.
[References]
  1. Kannapu HPR, Mullen CA, Elkasabi Y, Boateng AA, Fuel Process. Technol., 137, 220, 2015
  2. Zhao F, Ikushima Y, Arai M, J. Catal., 224(2), 479, 2004
  3. Couto CS, Madeira LM, Nunes CP, Araujo P, Chem. Eng. Technol., 38(9), 1625, 2015
  4. Wang JH, Yuan ZL, Nie RF, Hou ZY, Zheng XM, Ind. Eng. Chem. Res., 49(10), 4664, 2010
  5. Sun X, Olivos-Suarez AI, Osadchii D, Romero MJV, Kapteijn F, Gascon J, J. Catal., 357, 20, 2018
  6. Kannapu HPR, Rahul R, Reddy SSV, Burri DR, Rama Rao KS, Catal Commun., 10, 879, 2009
  7. Kim TW, Kim M, Kim SK, Choi YN, Jung M, Oh H, Suh YW, Appl. Catal. B: Environ., 286, 119889, 2021
  8. Hwang DW, Kashinathan P, Lee JM, Lee JH, Lee U, Hwang JS, Hwnaga YK, Chang JS, Green Chem., 13, 1672, 2011
  9. Kannapu HPR, Suh YW, Narani A, Burri DR, Seetha RRK, Catal. Lett., 147(1), 90, 2017
  10. Hong UG, Park HW, Lee J, Hwang S, Song IK, J. Ind. Eng. Chem., 18(1), 462, 2012
  11. Jeong H, Kim TH, Kim KI, Cho SH, Fuel Process. Technol., 87(6), 497, 2006
  12. Gao DZ, Feng YH, Yin HB, Wang AL, Jiang TS, Chem. Eng. J., 233, 349, 2013
  13. Kuksal A, Klemm E, Emig G, Stud. Surf. Sci. Catal., 130, 2111, 2000
  14. Sato S, Igarashi J, Yamada Y, Appl. Catal. A: Gen., 453, 213, 2013
  15. Li M. Hao Y, Fernando CL, Yiu HHP, Mark AK, Top. Catal., 58, 149, 2015
  16. Zhang J, Shi K, An Z, Zhu YR, Shu X, Song HY, Xiang X, He J, Ind. Eng. Chem. Res., 59(8), 3342, 2020
  17. Aramendia MA, Borau V, Jimenez C, Marinas JM, Porras A, Urbano FJ, J. Catal., 161(2), 829, 1996
  18. Ren H, Xu CH, Zhao HY, Wang YX, Liu J, Liu JY, J. Ind. Eng. Chem., 28, 261, 2015
  19. Coluccia BS, Boccuzzi F, Ghiotti G, Morterr C, J. Chem. Soc.-Faraday Trans., 78, 2011, 1982
  20. Wu G, Zhang J, Wu Y, Li Q, Chou K, Bao X, J. Alloy. Compd., 480, 788, 2009
  21. Mohan V, Pramod CV, Suresh M, Reddy KHP, Raju BD, Rao KSR, Catal. Commun., 18, 89, 2012
  22. Lee G, Kang JY, Yan N, Suh YW, Jung JC, J. Mol. Catal. A-Chem., 423, 347, 2016
  23. Kannapu HPR, Prasad NCK, Rao KSR, Kalevaru VN, Martin A, Burri DR, Catal. Sci. Technol., 6, 5494, 2016
  24. Takezawa N, Hanamaki C, Kobayashi H, J. Catal., 38, 101, 1975
  25. Hemo E, Virduk R, Landau MV, Herskowitz M, Chem. Eng. Trans., 21, 1243, 2010
  26. Li H, Ban L, Wang Z, Meng P, Zhang Y, Wu R, Zhao Y, Nanomaterials, 9, 842, 2019