Issue
Korean Journal of Chemical Engineering,
Vol.39, No.1, 69-85, 2022
Numerical simulation of surface vibration effects on improvement of pool boiling heat transfer characteristics of nanofluid
A numerical scheme for the effects of vibration on nanofluid pool boiling heat transfer was developed. For this purpose, a horizontal flat vibrating heated surface was considered. To model this phase-change phenomenon, the Eulerian-Eulerian approach was employed accompanied by the Rensselaer Polytechnic Institute (RPI) model to estimate the boiling heat flux on a solid surface, based on transient simulation. The k-ε turbulence model was used for simulating the Reynolds stresses appearing in the averaged Navier Stokes equation. The effects of the amplitude and frequency of vibration, nanofluid concentration along with magnitude of the heat flux on pool boiling heat transfer characteristics including heat transfer coefficient (HTC), vapor volume fraction and nanofluid velocity were studied. New analytical correlations for analyzing the heat transfer coefficient and nanofluid velocity based on the wall superheat temperature, amplitude and frequency of vibration were also developed. Results showed that applying mechanical vibration increased the boiling curve slope and the heat transfer coefficient. As a consequence, an increase of up to 30.11% and 17.5% in the heat transfer rate was achieved at lower heat fluxes for higher amplitude and frequency of oscillations, respectively.
[References]
  1. Sutharshan B, Mutyala M, Vijuk R, Mishra A, Energy Procedia, 7, 293, 2011
  2. Ciftci E, Sozen A, Heat Transf. Res., 51, 104310, 2020
  3. Alimoradi H, Shams M, Ashgriz N, Bozorgnezhad A, Case Stud. Therm. Eng., 24, 100829, 2020
  4. Zolfagharnasab MH, Salimi M, Zolfagharnasab H, Alimoradi H, Shams M, Aghanajafi C, Powder Technol., 380, 1, 2021
  5. Ham J, Cho H, Appl. Therm. Eng., 108, 158, 2016
  6. Alimoradi H, Shams M, Valizadeh Z, Modares Mech. Eng., 16(12), 545, 2017
  7. Bozorgnezhad A, Shams M, Kanani H, Hasheminasab M, J. Dispersion Sci. Technol., 36, 1190, 2015
  8. Alimoradi H, Shams M, Modares Mech. Eng., 19(7), 1613, 2019
  9. Roodbari M, Alimoradi H, Shams M, Aghanajafi C, J. Therm. Anal. Calorim., 1 (2021).
  10. Ciftci E, Sozen A, Int. J. Numer. Methods Heat Fluid Flow., 31, 2652, 2020
  11. Etedali S, Afrand M, Abdollahi A, Int. J. Therm. Sci., 145, 105977, 2019
  12. Sajith V, Madhusoodanan MR, Sobhan CB, ASME 2008, 555561 (2008).
  13. Hasheminasab M, et al., ASME 2014 12th Int. Conf. Nanochannels, Microchannels Minichannels, ICNMM2014-21586, V001T07A002, Chicago, Illinois (2014).
  14. Bozorgnezhad A, et al., ASME/JSME/KSME 2015 Jt. Fluids Eng. Conf., AJKFluids2015-22299, V001T22A004, Seoul, South Korea (2015).
  15. Bozorgnezhad A, Shams M, Kanani H, Hasherninasab M, Ahmadi G, Int. J. Hydrog. Energy, 41(42), 19164, 2016
  16. Ashrafi M, Shams M, Bozorgnezhad A, Ahmadi G, Heat Mass Transf., 52, 2671, 2016
  17. Atashi H, Alaei A, Kafshgari MH, Aeinehvand R, Rahimi SK, Exp. Heat Transf., 27(5), 428, 2014
  18. Jeong JH, Kwon YC, Heat Mass Transf. und Stoffuebertragung, 42(12), 1155 (2006)
  19. Unno N, Yuki K, Taniguchi J, Satake S, Int. J. Heat Mass Transf., 153, 119588, 2020
  20. Sathyabhama A, Prashanth SP, Heat Transf. - Asian Res., 46, 4960, 2015
  21. Kim HY, Kim YG, Kang BH, Int. J. Heat Mass Transf., 47(12-13), 2831, 2004
  22. Alangar S, Heat Mass Transf. und Stoffuebertragung, 53(1), 73 (2017).
  23. Alimoradi H, Shams M, Appl. Therm. Eng., 111, 1039, 2017
  24. Shoghl SN, Bahrami M, Moraveji MK, Int. Commun. Heat Mass Transf., 58, 12, 2014
  25. Valizadeh Z, Shams M, Heat Mass Transf. und Stoffuebertragung, 52(8), 1501 (2016).
  26. Kamel MS, Al-agha MS, Lezsovits F, Mahian O, J. Therm. Anal. Calorim., 142, 493505, 2019
  27. Abadi SMANR, Ahmadpour A, Meyer JP, Int. J. Multiph. Flow, 118, 97, 2019
  28. Shokouhmand H, Abadi SMANR, Heat Mass Transf. und Stoffuebertragung, 46(8-9), 891 (2010).
  29. Shokouhmand H, Abadi SMANR, Jafari A, Int. J. Mech. Mater. Des., 7, 313, 2011
  30. Vadasz J, Meyer J, Govender S, Transp. Porous Media, 103, 279294, 2014
  31. Li XD, Li K, Tu JY, Buongiorno J, Int. J. Heat Mass Transf., 69, 443, 2014
  32. Li XD, Yuan Y, Tu JY, Int. J. Heat Mass Transf., 91, 467, 2015
  33. Li X, Yuan Y, Tu J, Int. J. Therm. Sci., 98, 42, 2015
  34. Mohammadpourfard M, Aminfar H, Sahraro M, Heat Mass Transf. und Stoffuebertragung, 50(8), 1167 (2014).
  35. Hamilton RL, Crosser OK, Ind. Eng. Chem. Fundam., 1, 187, 1962
  36. Brinkman HC, J. Chem. Phys., 20(4), 571, 1952
  37. Ishii M, Zuber N, AIChE J., 25, 843, 1979
  38. Ranz WE, Marshall WR, Chem. Eng. Progress, 48, 141146, 1952
  39. de Bertodano ML, Lahey RT, Jones OC, Nucl. Eng. Des., 146, 4352, 1994
  40. Kurul N, Podowski MZ, Proceedings of 27th national heat transfer conference at minnieapolis, MN, USA, 2831 (1991).
  41. Kurul N, Podowski MZ, Proceedings of the 9th international heat transfer conference at Jerusalem, 2, 2126 (1990).
  42. Salehi H, Hormozi F, Heat Mass Transf., 54, 773784, 2017
  43. Krepper E, Koncar B, Egorov Y, Nucl. Eng. Des., 237(7), 716, 2007
  44. Tolubinsky VI, Kostanchuk DM, International Heat Transfer Conference 4, 23 (1970).
  45. Gerardi C, Buongiorno J, Hu L, Mckrell T, Nanoscale Res. Lett., 6, 232, 2011
  46. Cole R, AIChE J., 6(4), 533, 1960
  47. Akbari A, Alavi Fazel SA, Maghsoodi S, Kootenaei AS, J. Therm. Anal. Calorim., 135(1), 697, 2019
  48. Aminfar H, Mohammadpourfard M, Sahraro M, Comput. Fluids, 66, 29, 2012