Issue
Korean Journal of Chemical Engineering,
Vol.39, No.1, 58-62, 2022
Negative pressure cavitation fractional precipitation for the purification of paclitaxel from Taxus chinensis
The precipitation efficiency of paclitaxel from Taxus chinensis was remarkably improved through negative pressure cavitation fractional precipitation. When paclitaxel was precipitated under a negative pressure of -200mmHg, almost all of the paclitaxel (>97%) could be recovered in a short operation time (1min). The precipitation rate constant was calculated using the JMAK equation for kinetic analysis. The rate constant in the case of negative pressure (- 50 to -200mmHg) cavitation fractional precipitation increased by 2.147-6.046 times compared to fractional precipitation without negative pressure. The change of activation energy by the negative pressure (-50 to -200mmHg) was also calculated using the Arrhenius equation. The activation energy changes were -1,767 to -4,161 J/mol, implying that the activation energy could be reduced by introducing negative pressure, resulting in an increased precipitation rate. In addition, the application of negative pressure reduced the size of the precipitate by 3.3 times and increased the diffusion coefficient of paclitaxel by 4.4 times.
[References]
  1. Zhu L, Chen L, Cell. Mol. Biol. Lett., 24, 40, 2019
  2. Park JM, Kim JH, Korean Chem. Eng. Res., 59(1), 106, 2021
  3. Wei Y, Pu X, Zhao L, Oncol. Rep., 37, 3159, 2017
  4. Tan Z, Li Q, Wang C, Zhou W, Yang Y, Wang H, Yi Y, Li F, Molecules, 22, 1483, 2017
  5. Ghorbani M, Pourjafar F, Saffari M, Asgari Y, Meta Gene, 26, 100800, 2020
  6. Sun T, Liu Y, Li M, Yu H, Piao H, Mol. Cell. Probes, 53, 101602, 2020
  7. Modarresi-Darreh B, Kamali K, Kalantar SM, Dehghanizadeh H, Aflatoonian B, Eurasia J. Biosci., 12, 413, 2018
  8. Shirshekanb M, Rezadoost H, Javanbakht M, Ghassempour AR, Iran. J. Pharm. Res., 16, 1396, 2017
  9. Kang HJ, Kim JH, Process Biochem., 99, 316, 2020
  10. Seo HW, Kim JH, Process Biochem., 87, 238, 2019
  11. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39(12), 1985, 2004
  12. McPartland TJ, Patil RA, Malone MF, Roberts SC, Biotechnol. Prog., 28(4), 990, 2012
  13. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Biotechnol. Lett., 22(22), 1753, 2000
  14. Oguzkan SB, Karagul B, Uzun A, Guler OO, Ugras HI, Int. J. Pharmacol., 14, 76, 2018
  15. Jeon SI, Mun S, Kim JH, Process Biochem., 41(2), 276, 2006
  16. Jeon KY, Kim JH, Process Biochem., 44(7), 736, 2009
  17. Lee JY, Kim JH, Process Biochem., 47(12), 2388, 2012
  18. Lee CG, Kim JH, Process Biochem., 49(8), 1370, 2014
  19. Schueller BS, Yang RT, Ind. Eng. Chem. Res., 40(22), 4912, 2001
  20. Kang HJ, Kim JH, Biotechnol. Bioprocess Eng., 24, 513, 2019
  21. Oh SR, Kim JH, Korean J. Chem. Eng., 38(3), 480, 2021
  22. Dalvi SV, Dave RN, Int. J. Pharm., 387, 172, 2010
  23. Lee CG, Kim JH, Process Biochem., 59, 216, 2017
  24. Dalvi SV, Yadav MD, Ultrason. Sonochem., 24, 114, 2015
  25. Kang HJ, Thesis MS, Kongju National University, Cheonan, Korea (2021).
  26. Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J, Asian J. Pharm. Sci., 9, 304, 2014
  27. Ma D, Marshall JS, Wu J, J. Acoust. Soc. Am., 114, 3496, 2018
  28. Guo Z, Jones AG, Li N, Chem. Eng. Sci., 61, 1617, 2008
  29. Wolloch L, Kost J, J. Control. Release, 148, 204, 2010