Issue
Korean Journal of Chemical Engineering,
Vol.39, No.1, 1-19, 2022
Research needs targeting direct air capture of carbon dioxide: Material & process performance characteristics under realistic environmental conditions
The extraction of CO2 from ambient air, or direct air capture (DAC), is a crucial negative CO2 emissions technology with great potential for contributing to the mitigation of global warming and climate change. However, nearly all published research on DAC has been conducted under indoor temperature conditions: 20 to 30 °C. In contrast, the future global implementation requires DAC to be operational across a wide expanse of geographical areas, in which the local temperatures can vary between -30 to 50 °C. Similarly, the absolute humidity can vary from ~0 to 84 g/ m3 in various locations. Due to the massive amount of air that would be processed, it may be impractical to preheat or dehumidify the air before the CO2 separation. Therefore, it is important to develop DAC materials with good performance at realistic outdoor conditions, especially at sub-ambient conditions: -30 to 20 °C. In addition to material development, system-level studies at sub-ambient conditions are also needed for the DAC processes to reach optimal designs, which may be very different from those at ambient conditions. In this perspective article, we first assess the literature to identify the technical gaps that need to be filled for DAC to be applicable at realistic outdoor conditions. We then suggest additional research directions needed for DAC to be viable under varied conditions from the perspective of materials and system designs. For materials, we discuss the expected physical and chemical property changes for the sorbents when the temperature or humidity reaches extremes within their range, and how that will impact performance. Similarly, for system design, we indicate how varied conditions will impact performance and how these changes will impact process optimization.
[References]
  1. Climate change: atmospheric carbon dioxide. Climate.gov. science & information for a climate-smart nation.
  2. Climate change: global temperature. Climate.gov. science & information for a climate-smart nation.
  3. Huber DG, Gulledge J, Pew Center on Global Climate Change (2011).
  4. Garcia-Robledo C, Kuprewicz E, Staines CL, Erwin TL, Kress WJ, Proc. Natl. Acad. Sci. U.S.A., 113, 680, 2016
  5. Bassler C, Muller J, Hothorn T, Kneib T, Badeck F, Dziock F, Ecol. Indic., 10, 341, 2010
  6. Cazenave A, Dieng HB, Meyssignac B, Von Schuckmann K, Decharme B, Berthier E, Nat. Clim. Chang., 4, 358, 2014
  7. Lefevre S, Conserv. Physiol., 4, 2016
  8. Wang Y, Zhao L, Otto A, Robinius M, Stolten D, Energy Procedia, 114, 650, 2017
  9. Karaszova M, Zach B, Petrusova Z, Cervenka V, Bobak M, Syc M, Izak P, Sep. Purif. Technol., 238, 116448, 2020
  10. Zou L, Sun Y, Che S, Yang X, Wang X, Bosch M, Wang Q, Li H, Smith M, Yuan S, Perry Z, Zhou HC, Adv. Mater., 29, 170022, 2017
  11. Zhu X, Ge T, Yang F, Wang R, Renew. Sust. Energ. Rev., 137, 110651, 2020
  12. Wei X, Manovic V, Hanak DP, Energy Conv. Manag., 221, 113143, 2020
  13. Senneca O, Vorobiev N, Wutscher A, Cerciello F, Heuer S, Wedler C, Span R, Schiemann M, Muhler M, Scherer V, Fuel, 238, 173, 2019
  14. Zhang Y, Wang D, Pottimurthy Y, et al., Appl. Energy, 282, 116065, 2021
  15. Liu Y, Qin L, Cheng Z, Goetze JW, Kong F, Fan JA, Fan LS, Nat. Commun., 10, 5503, 2019
  16. Holmes HE, Lively RP, Realff MJ, JACS Au., 1, 795, 2021
  17. Sanz-Perez ES, Murdock CR, Didas SA, Jones CW, Chem. Rev., 116(19), 11840, 2016
  18. de Jonge MMJ, Daemen J, Loriaux JM, Steinmann ZJM, Huijbregts MAJ, Int. J. Greenh. Gas Control, 80, 25, 2019
  19. Veselovskaya JV, Lysikov AI, Netskina OV, Kuleshov DV, Okunev AG, Ind. Eng. Chem. Res., 59(15), 7130, 2020
  20. Liu Q, Ning L, Zheng S, Tao M, Shi Y, He Y, Sci. Rep., 3, 2916, 2013
  21. Pang SH, Lively RP, Jones CW, ChemSusChem., 11, 2628, 2018
  22. Oloye O, O’Mullane AP, ChemSusChem., 14, 1767, 2021
  23. Gutknecht V, Snæbjornsdottir SO, Sigfusson B, Aradottir ES, Charles L, Energy Procedia, 146, 129, 2018
  24. Siagian UWR, Raksajati A, Himma NF, Khoiruddin K, Wenten IG, J. Nat. Gas Sci. Eng., 67, 172, 2019
  25. Ulmer U, Dingle T, Duchesne PN, Morris RH, Tavasoli A, Wood T, Ozin GA, Nat. Commun., 10, 1, 2019
  26. Ruuskanen V, Givirovskiy G, Elfving J, Kokkonen P, Karvinen A, Jarvinen L, Sillman J, Vainikka M, Ahola J, J. Clean Prod., 278, 123423, 2021
  27. Hanusch JM, Kerschgens IP, Huber F, Neuburger M, Gademann K, Chem. Commun., 55, 949, 2019
  28. Average annual temperature, Ecoclimax environmental notes.
  29. Negative emissions technologies and reliable sequestration: A research agenda, National Academies Press, Washington, DC (2019).
  30. Shekhah O, Belmabkhout Y, Adil K, Bhatt PM, Cairns AJ, Eddaoudi M, Chem. Commun., 51, 13595, 2015
  31. Lincke J, Lassig D, Moellmer J, Reichenbach C, Puls A, Moeller A, Glaser R, Kalies G, Staudt R, Krautscheid H, Microporous Mesoporous Mater., 142, 62, 2011
  32. Wang Y, Levan MD, J. Chem. Eng. Data, 54(10), 2839, 2009
  33. Kim YK, Kim GM, Lee JW, J. Mater. Chem. A, 3, 10919, 2015
  34. Pini R, Microporous Mesoporous Mater., 187, 40, 2014
  35. Palomino M, Corma A, Rey F, Valencia S, Langmuir, 26(3), 1910, 2010
  36. Guo M, Wu H, Lv L, Meng H, Yun J, Jin J, Mi J, ACS Appl. Mater. Interfaces, 13, 21775, 2021
  37. Elfving J, Bajamundi C, Kauppinen J, Sainio T, J. CO2 Util., 22, 270, 2017
  38. Miao Y, He Z, Zhu X, Izikowitz D, Li J, Chem. Eng. J., 426, 131875, 2021
  39. Kwon HT, Sakwa-Novak MA, Pang SH, Sujan AR, Ping EW, Jones CW, Chem. Mater., 31, 5229, 2019
  40. Goeppert A, Zhang H, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR, ChemSusChem., 7, 1386, 2014
  41. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16(6), 1463, 2002
  42. McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR, J. Am. Chem. Soc., 134(16), 7056, 2012
  43. Elfving J, Bajamundi C, Kauppinen J, Energy Procedia, 114, 6087, 2017
  44. Darunte LA, Sen T, Bhawanani C, Walton KS, Sholl DS, Realff MJ, Jones CW, Ind. Eng. Chem. Res., 58(1), 366, 2019
  45. Sujan AR, Kumar DR, Sakwa-Novak M, Ping EW, Hu B, Park SJ, Jones CW, ACS Appl. Polym. Mater., 1, 3137, 2019
  46. Zhao A, Samanta A, Sarkar P, Gupta R, Ind. Eng. Chem. Res., 52(19), 6480, 2013
  47. Liu YM, Yu XJ, Appl. Energy, 211, 1080, 2018
  48. Heydari-Gorji A, Sayari A, Chem. Eng. J., 173(1), 72, 2011
  49. Serna-Guerrero R, Sayari A, Chem. Eng. J., 161(1-2), 182, 2010
  50. Ge K, Yu QC, Chen SH, Shi XY, Wang JQ, Chem. Eng. J., 364, 328, 2019
  51. Stevens L, Williams K, Han WY, Drage T, Snape C, Wood J, Wang J, Chem. Eng. J., 215-216, 699, 2013
  52. Anyanwu JT, Wang YR, Yang RT, Ind. Eng. Chem. Res., 59(15), 7072, 2020
  53. Zimmerman CM, Koros WJ, J. Polym. Sci. Part B Polym. Phys., 37, 1251, 1999
  54. Lively RP, Realff MJ, AIChE J., 62(10), 3699, 2016
  55. Drechsler C, Agar DW, Comput. Chem. Eng., 126, 520, 2019
  56. Sinha A, Darunte LA, Jones CW, Realff MJ, Kawajiri Y, Ind. Eng. Chem. Res., 56(3), 750, 2017
  57. Stampi-Bombelli V, van der Spek M, Mazzotti M, Adsorption, 26, 1183, 2020
  58. Wilson SMW, Tezel FH, Ind. Eng. Chem. Res., 59(18), 8783, 2020
  59. Zhao R, Liu L, Zhao L, Deng S, Li H, J. CO2 Util., 26, 388, 2018
  60. Lee TS, Cho JH, Chi SH, Build. Environ., 92, 209, 2015
  61. Grande CA, Ribeiro RP, Oliveira EL, Rodrigues AE, Energy Procedia, 1, 1219, 2009
  62. Wang T, Lackner KS, Wright AB, Phys. Chem. Chem. Phys., 15, 504, 2013
  63. Lebedev MP, Startsev OV, Kychkin AK, Polyakov VV, Procedia Struct. Integr., 30, 76, 2020
  64. Gibbins MN, Hoffman DJ, NASA Contract. Reports (1982).
  65. Rosu C, Lin HS, Jiang L, Breedveld V, Hess DW, J. Colloid Interface Sci., 516, 202, 2018
  66. Huang X, Tepylo N, Pommier-Budinger V, Budinger M, Bonaccurso E, Villedieu P, Bennani L, Prog. Aerosp. Sci., 105, 74, 2019
  67. Chanut N, Bourrelly S, Kuchta B, Serre C, Chang JS, Wright PA, Llewellyn PL, ChemSusChem., 10, 1543, 2017
  68. Yazaydin AO, Benin AI, Faheem SA, Jakubczak P, Low JJ, Richard RW, Snurr RQ, Chem. Mater., 21, 1425, 2009
  69. Lee JJ, Chen CH, Shimon D, Hayes SE, Sievers C, Jones CW, J. Phys. Chem. C, 121, 23480, 2017
  70. Soubeyrand-Lenoir E, Vagner C, Yoon JW, Bazin P, Ragon F, Hwang YK, Serre C, Chang JS, Llewellyn PL, J. Am. Chem. Soc., 134(24), 10174, 2012
  71. Gao F, Li Y, Bian Z, Hu J, Liu H, J. Mater. Chem. A, 3, 8091, 2015
  72. Li G, Xiao P, Webley P, Zhang J, Sing R, Marshall M, Adsorption, 14, 415, 2008
  73. Kizzie AC, Wong-Foy AG, Matzger AJ, Langmuir, 27(10), 6368, 2011
  74. Liu J, Wang Y, Benin AI, Jakubczak P, Willis RR, LeVan MD, Langmuir, 26(17), 14301, 2010
  75. Madden DG, et al., Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 375, 2084 (2017).
  76. Joos L, Swisher JA, Smit B, Langmuir, 29, 15936, 2013
  77. Brandani F, Ruthven DM, Ind. Eng. Chem. Res., 43(26), 8339, 2004
  78. Kumar A, Madden DG, Lusi M, Chen KJ, Daniels EA, Curtin T, Perry JJ, Zaworotko MJ, Angew. Chem.-Int. Edit., 54, 14372, 2015
  79. Wang Y, Levan MD, J. Chem. Eng. Data, 55(9), 3189, 2010
  80. Burtch NC, Jasuja H, Walton KS, Chem. Rev., 114(20), 10575, 2014
  81. Silva P, Vilela SMF, Tome JPC, Almeida Paz FA, Chem. Soc. Rev., 44, 6774, 2015
  82. Tan K, Nijem N, Gao Y, Zuluaga S, Li J, Thonhauser T, Chabal YJ, CrystEngComm., 17, 247, 2015
  83. McDonald TM, Mason JA, Kong XQ, Bloch ED, Gygi D, Dani A, Crocella V, Giordanino F, Odoh SO, Drisdell WS, Vlaisavljevich B, Dzubak AL, Poloni R, Schnell SK, Planas N, Lee K, Pascal T, Wan LWF, Prendergast D, Neaton JB, Smit B, Kortright JB, Gagliardi L, B, Nature, 519(7543), 303, 2015
  84. Lee YH, Kwon Y, Kim C, Hwang YE, Choi M, Park Y, Jamal A, Koh DY, JACS Au., 1, 1198, 2021
  85. Kim EJ, Siegelman RL, Jiang HZH, Forse AC, Lee JH, Martell JD, Milner PJ, Falkowski JM, Neaton JB, Reimer JA, Weston SC, Long JR, Science, 369(6502), 392, 2020
  86. Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma SQ, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ, Nature, 495(7439), 80, 2013
  87. Xu D, et al., Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol., 39, 169 (2011).
  88. Kolle JM, Fayaz M, Sayari A, Chem. Rev., 121, 7280, 2021
  89. Donaldson TL, Nguyen YN, Ind. Eng. Chem. Fundam., 19, 260, 1980
  90. Sayari A, Belmabkhout Y, J. Am. Chem. Soc., 132, 6312, 2010
  91. Zhang H, Goeppert A, Olah GA, Prakash GKS, J. CO2 Util., 19, 91, 2017
  92. Choi S, Drese JH, Jones CW, ChemSusChem., 2, 796, 2009
  93. Bollini P, Didas SA, Jones CW, J. Mater. Chem., 21, 15100, 2011
  94. Bacsik Z, Ahlsten N, Ziadi A, Zhao GY, Garcia-Bennett AE, Martin-Matute B, Hedin N, Langmuir, 27(17), 11118, 2011
  95. Hahn MW, Steib M, Jentys A, Lercher JA, J. Phys. Chem. C, 119, 4126, 2015
  96. Li K, Kress JD, Mebane DS, J. Phys. Chem. C, 120, 23683, 2016
  97. Sardo M, Afonso R, Juzkow J, Pacheco M, Bordonhos M, Pinto ML, Gomes JR, Mafra L, J. Mater. Chem. A, 9, 5542, 2021
  98. Didas SA, Sakwa-Novak MA, Foo GS, Sievers C, Jones CW, J. Phys. Chem. Lett., 5, 4194, 2014
  99. Chen CH, Shimon D, Lee JJ, Mentink-Vigier F, Hung I, Sievers C, Jones CW, Hayes SE, J. Am. Chem. Soc., 140(28), 8648, 2018
  100. Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR, J. Am. Chem. Soc., 133(50), 20164, 2011
  101. Quang DV, Dindi A, Rayer AV, El Hadri N, Abdulkadir A, Abu-Zahra MRM, Greenh. Gases Sci. Technol., 5, 91, 2015
  102. Sujan AR, Pang SH, Zhu G, Jones CW, Lively RP, ACS Sustain. Chem. Eng., 7, 5264, 2019
  103. Sayari A, Liu Q, Mishra P, ChemSusChem., 9, 2796, 2016
  104. Gebald C, Wurzbacher JA, Borgschulte A, Zimmermann T, Steinfeld A, Environ. Sci. Technol., 48, 2497, 2014
  105. Wijesiri RP, Knowles GP, Yeasmin H, Hoadley AFA, Chaffee AL, Ind. Eng. Chem. Res., 58(8), 3293, 2019
  106. Rim G, Feric TG, Moore T, Park AHA, Adv. Funct. Mater., 31, 201004, 2021
  107. Wurzbacher JA, Gebald C, Steinfeld A, Energy Environ. Sci., 4, 3584, 2011
  108. Wurzbacher JA, Gebald C, Piatkowski N, Steinfeld A, Environ. Sci. Technol., 46, 9191, 2012
  109. Wurzbacher JA, Gebald C, Brunner S, Steinfeld A, Chem. Eng. J., 283, 1329, 2016
  110. Drechsler C, Agar DW, Energy, 192, 116587, 2020
  111. Matveev YI, Grinberg VY, Tolstoguzov VB, Food Hydrocolloids, 14, 425, 2000
  112. Fan YF, Labreche Y, Lively RP, Jones CW, Koros WJ, AIChE J., 60(11), 3878, 2014
  113. Qi G, Fu L, Giannelis EP, Nat. Commun., 5, 5796, 2014
  114. Koutsianos A, Barron AR, Andreoli E, J. Phys. Chem. C, 121, 21772, 2017
  115. Hou CL, Wu YS, Jiao YZ, Huang J, Wang T, Fang MX, Zhou H, J. Zhejiang Univ. Sci. A., 18, 819, 2017
  116. Van Der Giesen C, Meinrenken CJ, Kleijn R, Sprecher B, Lackner KS, Kramer GJ, Environ. Sci. Technol., 51, 1024, 2017
  117. Darunte LA, Terada Y, Murdock CR, Walton KS, Sholl DS, Jones CW, ACS Appl. Mater. Interfaces, 9, 17042, 2017
  118. McQueen N, Gomes KV, McCormick C, Blumanthal K, Pisciotta M, Wilcox J, Prog. Energy, 3, 032001, 2021