Issue
Korean Journal of Chemical Engineering,
Vol.38, No.12, 2549-2559, 2021
Spectroscopic, microscopic and antibacterial studies of green synthesized Ag nanoparticles at room temperature using Psidium guajava leaf extract
Spectroscopic, microscopic and size dependent antibacterial efficiency of Ag nanoparticles (NPs) synthesized by green approach were studied. Five different samples of Ag NPs having average sizes in the range of ~14 to ~21 nm were synthesized using Psidium guajava (Guava) leaf extract (0.25ml, 0.5ml, 1ml, 2ml, 4ml, respectively) in 50ml aqueous AgNO3 solution of molar concentration of 1mM. The sizes of the NPs were found to increase with increase in concentration of leaf extract. Such increase in NP size is mainly due to the increase in biomolecules, in the solution, that transforms the Ag ions to Ag NPs. Spectroscopic and microscopic properties of as-synthesized Ag NPs were obtained by characterizing the prepared samples using suitable and affordable methodologies. These Ag NPs showed significant size dependent antibacterial effect. The minimum inhibitory concentration and minimum lethal concentration of the sample showing highest zone of inhibition against Escherichia coli (E. coli) was determined as 40 μg/ml and 80 μg/ml, respectively. Percentage of survivability was also measured through viable plate count. The smallest Ag NPs (average size ~14 nm) considered here produced the best antibacterial activity against the tested E. coli compared to Ag NPs having larger sizes at identical bacterial concentration. The enhanced antibacterial efficiency for smaller Ag NPs is mainly due to larger surface area-to-volume ratio of smaller NPs. The probable mechanism of bio-reduction of silver ions and formation of Ag NPs has also been well explained, which justifies the result obtained in this work.
[References]
  1. Prabhu S, Poulose EK, Int. Nano Lett., 2, 32, 2012
  2. Ghosh S, Patil S, Ahire M, et al., Int. J. Nanomedicine, 7, 483, 2012
  3. Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK, J Nanobiotechnology, 9, 30, 2011
  4. Rai M, Yadav A, Gade A, Biotechnol. Adv., 27, 76, 2009
  5. Klasen HJ, Burns, 26, 17, 2000
  6. Sondi I, Salopek-Sondi B, J. Colloid Interface Sci., 275(1), 177, 2004
  7. Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C, J. Nanobiotechnology, 8, 1, 2010
  8. Daniel MC, Astruc D, Chem. Rev., 104(1), 293, 2004
  9. Lee S, Cha EJ, Park K, Lee SY, Hong JK, Sun IC, Kim S, Choi K, Kwon IC, Kim K, Ahn CH, Angew. Chem.-Int. Edit., 47, 2804, 2008
  10. Kelkawi AHA, Kajani AA, Bordbar AK, IET Nanobiotechnol., 11, 370, 2017
  11. Muhammad Z, Raza A, Ghafoor S, Naeem A, Naz SS, Riaz S, Ahmed W, Rana NF, Eur. J. Pharm. Sci., 91, 251, 2016
  12. Agnihotri S, Mukherji S, Mukherji S, RSC Adv., 4, 3974, 2014
  13. Dobrucka R, Długaszewska J, Indian J. Microbiol., 55, 168, 2015
  14. Jeong Y, Lim DW, Choi J, Adv. Mater. Sci. Eng., 2014, 763807, 2014
  15. Vasilev K, Coatings, 9, 654, 2019
  16. Casolaro M, Casolaro I, Akimoto J, Ueda M, Ueki M, Ito Y, Gels, 4, 42, 2018
  17. Kvitek O, Mutylo E, Vokata B, Ulbrich P, Fajstavr D, Reznickova A, Svorcik V, Coatings, 10, 1046, 2020
  18. Petrova I, Kozlova O, Vladimirtseva E, Smirnova S, Lipina A, Odintsova O, Coatings, 11, 159, 2021
  19. Mahmud S, Sultana MZ, Pervez MN, Habib MA, Liu HH, Fibers, 5, 35, 2017
  20. Mukherji S, Bharti S, Shukla G, Mukherji S, Phys. Sci. Rev., 4, 201700, 2018
  21. Shahzad A, Kim WS, Yu T, RSC Adv., 5, 28652, 2015
  22. Shahzad A, Chung M, Yu T, Kim WS, Chem. Asian J., 10, 2512, 2015
  23. Han HJ, Yu T, Kim WS, Im SH, J. Cryst. Growth, 469, 46, 2017
  24. Hussain F, Shaban SM, Kim JH, Kim DH, Korean J. Chem. Eng., 36(6), 988, 2019
  25. Seku K, Gangapuram BP, Pejjai B, Kadimpati KK, Golla N, J. Nanostruct. Chem., 8, 179, 2018
  26. Khodadadi MR, Olya ME, Naeimi A, Korean J. Chem. Eng., 33(7), 2018, 2016
  27. Kuiri PK, Mahapatra DP, Adv. Sci. Eng., 6, 290, 2012
  28. Kuiri PK, J. Appl. Phys., 108, 054301, 2010
  29. Raveendran P, Fu J, Wallen SL, J. Am. Chem. Soc., 125(46), 13940, 2003
  30. Roy P, Das B, Mohanty A, Mohapatra S, Appl. Nanosci., 7, 843, 2017
  31. Wiley JM, Sherwood LM, Woolverton CJ, Prescott’s microbiology, 9th Ed., McGraw Hill International (2013).
  32. Ghosh T, Chottopadhyay A, Mandal AC, Pramanik S, Kuiri PK, Chin. J. Phys., 68, 835, 2020
  33. Goudarzi M, Mir N, Mousavi-Kamazani M, Bagheri S, Salavati-Niasari M, Sci. Rep., 6, 32539, 2016
  34. Siddhant J, Mehata MS, Sci. Rep., 7, 15867, 2017
  35. Patterson AL, Phys. Rev., 56, 978, 1939
  36. Pramanik S, Ghosh T, Ghosh M, De SC, Kuiri PK, Adv. Sci. Eng. Med., 9, 414, 2017
  37. Mukherjee S, Pramanik S, Das S, Chakraborty S, Nath R, Kuiri PK, J. Alloy. Compd., 814, 152015, 2020
  38. Ong HC, Zhu ZXE, Du GT, Appl. Phys. Lett., 80, 941, 2002
  39. Toro MCG, Schlegel JP, Giraldo CHC, Chemistry Select, 3, 8936, 2018
  40. Fattah WIA, Sallam ASM, Attawa NA, Salama E, Maghraby AM, Ali GW, Mater. Res. Express., 1, 035024, 2014
  41. Verma A, Mehata MS, J. Radiat. Res. Appl. Sc., 9, 109, 2016
  42. Kuiri PK, Pramanik S, J. Appl. Phys., 123, 154302, 2018
  43. Parang Z, Keshavarz A, Farahi S, Elahi SM, Ghoranneviss M, Parhoodeh S, Scientia Iranica, 19, 843, 2012
  44. Pramanik S, Mondal S, Mandal AC, Mukherjee S, Das S, Ghosh T, Nath R, Ghosh M, Kuiri PK, J. Alloy. Compd., 849, 156684, 2020
  45. Sougandhi PR, Reddeppa M, Harini SS, Rani TS, Gangadhara R, J. of Drug Delivery and Therapeutics, 8, 301 (2018).
  46. Hemadi S, Shojaosadati SA, Polyhedron, 171, 172, 2019
  47. Jayakumar A, Vedhaiyan RK, Korean J. Chem. Eng., 36(11), 1869, 2019
  48. Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y, Int. J. Nanomedicine, 13, 3311, 2018
  49. Virkutyte J, Varma RS, Sustainable preparation of metal nanoparticles, Royal Society of Chemistry, Cambridge (2012).
  50. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD, RSC Adv., 9, 2673, 2019
  51. Duran N, et al., Nanomedicine: Nanotechnology, Biology and Medicine, 12, 789 (2016).
  52. Parashar UK, Kumar V, Bera T, Saxena PS, Nath G, Srivastava SK, Giri R, Srivastava A, Nanotechnology, 22, 415104, 2011
  53. Bose D, Chatterjee S, Appl. Nanosci., 6, 895, 2016
  54. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO, Acta Nature, 6, 35, 2014
  55. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A, Colloids Surf. B: Biointerfaces, 81, 81, 2010
  56. Trouillas P, Marsal P, Siri D, Lazzaroni R, Duroux JL, Food Chem., 97, 679, 2006