Issue
Korean Journal of Chemical Engineering,
Vol.38, No.12, 2500-2509, 2021
Acceleration of microalgal biofilm formation on PET by surface engineering
Biofilm-based microalgal cultivation has recently received great attention owing to its low harvesting cost, but the main problem in practicing it is the low rate of attachment on solid carriers. The aim of this research is to introduce novel physical and wet chemical surface engineering methods to provide more favorable polymeric surfaces for microalgal adhesion. PET threads were used as a substrate in the treatments. The surface of the threads was treated with chromic acid, sodium hydroxide and sandpaper. The chemical composition, surface morphology, topography and contact angle of the threads were characterized. The threads were placed in a biofilm-based cylindrical photobioreactor as a bed for attachment. Two freshwater single-cell microalgae, Scenedesmus dimorphus and Chlorella vulgaris, were cultivated in the photobioreactor to assess the attachment rate of the threads. The analysis of SEM and AFM images confirmed the creation of new grooves. The AFM image analysis showed 323%, 184% and 11.5% increase in the surface roughness, while there were 73%, 51%, and 30% rates of reduction in the contact angles for the treatments with acid, sandpaper and base, respectively. Creation of new grooves, increase of the surface roughness and decrease of the contact angle led to an increase in the microalgae attachment rate. The best results were achieved with acid treatment. It led to a remarkable increase in the attachment rate of S. dimorphus. However, the attachment of C. vulgaris cells was not efficient. This research is the first to apply a surface engineering method to increase the microalgal attachment rate in biofilm-based systems. The insight that is provided can be of benefit for further studies in this field.
[References]
  1. Irving TE, Allen DG, Appl. Microbiol. Biotechnol., 92(2), 283, 2011
  2. Gudin C, Thepenier C, Advances In Biotechnological Processes, 6, 73 (1986).
  3. Cao J, Yuan W, Pei Z, Davis T, Cui Y, Beltran M, J. Manuf. Sci. Eng., 131, 064505, 2009
  4. Boelee N, Temmink H, Janssen M, Buisman C, Wijffels R, Water Res., 45, 5925, 2011
  5. Cui Y, Yuan W, Cao J, Int. J. Agric. Biol. Eng., 6, 44, 2013
  6. OzkanA A, Kinney K, Katz L, Berberoglu H, Bioresour. Technol., 114, 542, 2012
  7. Wei Q, Hu Z, Li G, Xiao B, Sun H, Tao M, Front. Environ. Sci. Eng. China, 2, 446, 2008
  8. Shen Y, Xu X, Zhao Y, Lin X, Bioprocess Biosyst. Eng., 37, 441, 2014
  9. Schumacher JF, Carman ML, Estes TG, Feinberg AW, Wilson LH, Callow ME, Callow JA, Finlay JA, Brennan AB, Biofouling, 2, 55, 2007
  10. Babu M, Effect of algal biofilm and operational conditions on nitrogen removal in waste stabilization ponds, CRC Press, The Netherlands (2011).
  11. Oliveira R, Azeredo J, Teixeira P, Biofilms in wastewater treatment: An interdisciplinary approach, International Water Association, London (2003).
  12. Johnson MB, Wen ZY, Appl. Microbiol. Biotechnol., 85(3), 525, 2010
  13. Bhaiji T, Enhancing microalgae attachment for biofilm-based photobioreactors, Cranfield University, Cranfield (2016).
  14. Gross M, Zhao X, Mascarenhas V, Wen Z, Biotechnol. Biofuels, 9, 38, 2016
  15. Bag DS, Kumar VP, Maiti S, J. Appl. Polym. Sci., 71(7), 1041, 1999
  16. Goddard JM, Hotchkiss J, Prog. Polym. Sci., 32, 698, 2007
  17. Holmberg K, Hyden H, Preparative Biochem., 15, 309, 1985
  18. Penn L, Wang H, Polym. Adv. Technol., 5, 809, 1994
  19. Sheng E, Sutherland I, Brewis D, Heath R, J. Adhes Sci. Technol., 9, 47, 1995
  20. Tho S, Ibrahim K, J. Teknol., 59, 5, 2012
  21. ASTM, Standard practice for preparation of surfaces of plastics prior to adhesive bonding, ASTM International, Pennsylvania (2017).
  22. Danaee S, Yazdanbakhsh N, Naghoosi H, Sheykhinejad A, Korean J. Chem. Eng., 35(5), 1144, 2018
  23. Kotai J, Instructions for preparation of modified nutrient solution z8, Norwegian Institute for Water Research, Oslo (1972).
  24. Huang Q, Jiang F, Wang L, Yang C, Engineering, 3, 318, 2017
  25. Katarzyna L, Sai G, Singh OA, Renew. Sust. Energ. Rev., 42, 1418, 2015
  26. Chatterjee S, Biswas N, Datta A, Dey R, Maiti P, Microscopy, 63, 269, 2014
  27. Pathan A, Bond J, Gaskin R, Mater. Today, 12, 32, 2010
  28. Norton T, Thompson R, Pope J, Veltkamp C, Banks B, Howard C, Hawkins S, Aquat. Microb. Ecol., 16, 199, 1998
  29. Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S, J. Bacteriol., 182, 6482, 2000
  30. Cordeiro N, Ornelas M, Ashori A, Sheshmani S, Norouzi H, Carbohydr. Polym., 87, 2367, 2012
  31. Donlan RM, Emerging Infect. Dis., 8, 881, 2002
  32. Drobota M, et al., University Politehnica of Bucharest Scientific Bulletin Series B-Chemistry and Materials Science, 77, 131 (2015).
  33. Slepicka P, Kasalkova NS, Stranska E, Bacakova L, Svorcik V, Express. Polym. Lett., 7, 535, 2013
  34. Zhang H, Tang Y, Cai DQ, Liu XA, Wang XQ, Huang Q, Yu ZL, J. Hazard. Mater., 181(1-3), 801, 2010
  35. Wang H, Chen S, Zhang J, Colloid Polym. Sci., 287, 541, 2009
  36. Fang Z, Yang J, Liu Y, Shao T, Zhang C, IEEE Trans. Plasma Sci., 41, 1627, 2013
  37. Donelli I, Freddi G, Nierstrasz VA, Taddei P, Polym. Degrad. Stabil., 95, 1542, 2010
  38. Liu Y, He T, Gao C, Colloids Surf. B: Biointerfaces, 46, 117, 2005
  39. Hao W, Yanpeng L, Zhou S, Xiangying R, Wenjun Z, Jun L, Int. J. Agric. Biol. Eng., 10, 125, 2017
  40. Bhushan B, Modern tribology handbook, two volume set, CRC press, Florida, 74 (2000).
  41. Raposo M, Ferreira Q, Ribeiro P, Modern Research and Educational Topics in Microscopy, 1, 758 (2007).
  42. Taufik M, Jain PK, J. Manuf. Process., 30, 161, 2017
  43. Cui Y, Yuan WQ, Appl. Energy, 112, 485, 2013
  44. Webb HK, Crawford RJ, Sawabe T, Ivanova EP, Microbes Environ., 24, 39, 2009
  45. Blais P, Carlsson D, Csullog G, Wiles D, J. Colloid Interface Sci., 47, 636, 1974
  46. Ista LK, Callow ME, Finlay JA, Coleman SE, Nolasco AC, Simons RH, Callow JA, Lopez GP, Appl. Environ. Microbiol., 70, 4151, 2004
  47. Callow ME, Fletcher RL, Int. Biodeterior. Biodegradation, 34, 333, 1994
  48. Fletcher RL, Callow ME, British Phycological J., 27, 303, 1992
  49. Sekar R, et al., Asian pacific phycology in the 21st century: Prospects and challenges, Springer, Hong Kong, 109 (2004).
  50. Ozkan A, Berberoglu H, ASME 2011 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 169 (2011).
  51. Manheim D, Nelson Y, Environ. Prog. Sustain. Energy, 32, 946, 2013
  52. Bhattacharya P, Lin S, Turner JP, Ke PC, J. Phys. Chem. C, 114, 16556, 2010
  53. Trainor FR, Burg CA, J. Phycol., 1, 15, 1965
  54. Eckardt NA, The Plant Cell, 22, 2924, 2010
  55. Renner LD, Weibel DB, MRS Bull., 36, 347, 2011
  56. Ozkan A, Berberoglu H, Colloids Surf. B: Biointerfaces, 112, 287, 2013
  57. Moreno L, Prieto EM, Casanova H, Ciencia en Desarrollo, 6, 17 (2015).
  58. Wang JH, Zhuang LL, Xu XQ, Deantes-Espinosa VM, Wang XX, Hu HY, Renew. Sust. Energ. Rev., 92, 331, 2018
  59. Lizzul AM, Hellier P, Purton S, Baganz F, Ladommatos N, Campos L, Bioresour. Technol., 151, 12, 2014
  60. Wiel JBV, Mikulicz JD, Boysen MR, et al., RSC Adv., 7, 4402, 2017
  61. Akaul F, Kizilkaya IT, Akgul R, Erdugan H, Turk J. Fish Aquat. Sci., 17, 609, 2017
  62. Lurling M,The smell of water: grazer-induced colony formation in Scenedesmus, Netherlands (1999).
  63. Mayeli S, Nandini S, Sarma S, Aquatic Ecology, 38, 515, 2005
  64. Edwards KJ, Rutenberg AD, Chem. Geol., 180, 19, 2001
  65. Chen X, Liu T, Wang Q, Microb. Cell Fact., 13, 142, 2014
  66. Sirmerova M, Prochazkova G, Siristova L, Kolska Z, Branyik T, J. Appl. Phycol., 25, 1687, 2013