Issue
Korean Journal of Chemical Engineering,
Vol.38, No.11, 2365-2374, 2021
Industrial by-product utilized synthesis of mesoporous aluminum silicate sorbent for thorium removal
Recently, there has been an increasing concern in finding sorbents for radionuclide removal from natural sources. AS-BFS sorbent (aluminum silicate composites derived from blast furnace slag) is a suitable candidate for this purpose; due to economic and environmental reasons. Blast furnace slag (BFS) is a by-product of the iron and steel industry plants. The development of a cost-effective route for recycling and utilization assessment of BFS is an urgent task. AS-BFS was prepared from BFS and its physicochemical properties were determined. The elemental composition of the AS-BFS is mainly oxygen (44%), Si (34%), and Al (19%), with traces of titanium, iron, chloride, and calcium. Experimental potentiality regarding sorption characteristics of AS-BFS to thorium ions was explored via the batch method. AS-BFS showed good adsorption capacity for thorium (obtained after 240 min) from aqueous streams (39.7 mg/g). The sorption process is fitted to the mono-layer adsorption model at optimum conditions. It was also proved that adsorption kinetics follows the pseudo-second-order model. The desorption results revealed that thorium ions (93%) could be eluted using 1M HNO3. Hence, the research work indicates that the thorium sorption method with AS-BFS is cost-effective, efficient, and recommended for thorium removal from natural sources.
[References]
  1. Lancmuir D, Herman JS, Geochim. Cosmochim. Acta, 44, 1753, 1980
  2. Dill HGA, Arab. J. Geosci., 4, 123, 2011
  3. Vertes A, Nagy S, Klencsar Z, Lovas RG, Rosch F, Handbook of nuclear chemistry, Springer US, New York, (2010).
  4. Abd El-Magied MO, Tolba AA, El-Gendy HS, Zaki SA, Ati AA, Hydrometallurgy, 169, 89, 2017
  5. Habashi F, Handbook of extractive metallurgy, WILEY-VCH, Weinheim, Germany (1997).
  6. Sadeek SA, Moussa EM, El-Sayed MA, Amine MM, Abd El-Magied MO, J. Dispersion Sci. Technol., 35, 926, 2014
  7. Agency for Toxic Substances and Disease Registry (ATSDR), Public Health Service (1990).
  8. EPA, U.S. Environmental Protection Agency, Office of Water, EPA822S12001 (2012).
  9. FDA, U.S. Food and Drug Administration, Code of Federal Regulations 21 CFR 165.110 (2017).
  10. Hung NT, Thuan LB, Thanh TC, et al., Hydrometallurgy, 198, 105506, 2020
  11. Akl ZF, Hegazy MA, J. Environ. Chem. Eng., 8, 104185, 2020
  12. Yuan D, Zhang S, Tan J, Dai Y, Wang Y, He Y, Liu Y, Zhao X, Sep. Sci. Technol., 237, 116379, 2020
  13. Yuan D, Zhang S, Xiang Z, He Y, Wang Y, Liu Y, Zhao X, Zhou X, Zhang Q, ACS Appl. Mater. Interfaces, 11, 24512, 2019
  14. Seader JD, Henley EJ, Separation process principles, John Wiley & Sons, Inc., New York (2006).
  15. Worch E, Adsorption technology in water treatment-fundamentals, processes, and modeling, Berlin (2012).
  16. Broujeni BR, Nilchi A, Azadi F, Environ. Nanotechnol. Monit. Manage., 15, 100400, 2021
  17. Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopoulou C, Oikonomou D, J. Hazard. Mater., 97(1-3), 71, 2003
  18. Dolatyari L, Shateri M, Yaftian MR, Rostamnia S, Sep. Sci. Technol., 54(17), 2863, 2019
  19. Dousti Z, Dolatyari L, Yaftian MR, Rostamnia S, Sep. Sci. Technol., 54, 2606, 2019
  20. Dolatyari L, Yaftian MR, Rostamnia S, Sep. Sci. Technol., 53(9), 1282, 2018
  21. Dolatyari L, Yaftian MR, Rostamnia S, J. Environ. Manage., 169, 8, 2016
  22. Dolatyari L, Yaftian MR, Rostamnia S, J. Taiwan Inst. Chem. Eng., 60, 174, 2016
  23. Karmakar R, Singh P, Sen K, Sep. Sci. Technol., 56, 2369, 2021
  24. Marczenko Z, Balcerzak M, Separation, preconcentration and spectrophotometry in inorganic analysis, Amsterdam (2000).
  25. Coates J, Interpretation of infrared spectra, a practical approach, encyclopedia of analytical chemistry, Chichester (2000).
  26. Ersoy B, Sariisik A, Dikmen S, Sariisik G, Powder Technol., 197(1-2), 129, 2010
  27. Arrigo I, Catalfamo P, Cavallari L, Di Pasquale S, J. Hazard. Mater., 147(1-2), 513, 2007
  28. Borges ME, Hernandez L, Ruiz-Morales JC, Martin-Zarza PF, Fierro JLG, Esparza P, Clean Techn. Environ. Policy, 19, 2113, 2017
  29. Umegaki T, Ogawa R, Toyama N, Ohki S, Tansho M, Shimizu T, Kojima Y, Inorg. Chem. Front., 4, 1568, 2017
  30. Thommes M, Kaneko K, Neimark A, Olivier J, Rodriguez-Reinoso F, Rouquerol J, Sing K, Pure Appl. Chem., 87, 1051, 2015
  31. Ansari Z, Singha SS, Saha A, Sen K, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 176, 67, 2017
  32. Singh P, Maiti PK, Sen K, Bull. Mater. Sci., 43, 56, 2020
  33. Yokoyama T, Ueda A, Kato K, Mogi K, Matsuo S, J. Colloid Interface Sci., 252(1), 1, 2002
  34. Treto-Suarez MA, Prieto-Garcia JO, Mollineda-Trujillo A, Lamazares E, Hidalgo-Rosa Y, Mena-Ulecia K, Sci. Rep., 10, 10836, 2020
  35. Kannan C, Muthuraja K, Devi MR, J. Hazard. Mater., 244-245, 10, 2013
  36. Chargui F, et al., Boletin de la Sociedad Espanola de Ceramica y Vidrio, 57, 169 (2018).
  37. Ekberg C, Albinsson Y, Comarmond MJ, Brown PL, J. Solution Chem., 29, 63, 2000
  38. Beardmore J, Lopez X, Mujika JI, Exley C, Sci. Rep., 6, 30913, 2016
  39. Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2, 2010
  40. Kaygun AK, Akyil S, J. Hazard. Mater., 147(1-2), 357, 2007
  41. Hongxia Z, Zheng D, Zuyi T, Colloids Surf. A: Physicochem. Eng. Asp., 278, 46, 2006
  42. Nilchi A, Dehaghan TS, Garmarodi SR, Desalination, 321, 67, 2013
  43. Chen CL, Wang XK, Appl. Geochem., 22, 436, 2007
  44. Abd El-Magied MO, J. Eng., 2016, 1, 2016
  45. Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2, 2010
  46. Abu El-Soad AM, Abd El-Magied MO, Atrees MS, Kovaleva EG, Lazzara G, Int. J. Biol. Macromol., 139, 153, 2019