Issue
Korean Journal of Chemical Engineering,
Vol.38, No.11, 2279-2285, 2021
Evaluation of elemental leaching behavior and morphological changes of steel slag in both acidic and basic conditions for carbon sequestration potential
Carbon mineralization technology involves reactions between carbon dioxide (CO2) and alkali earth metals such as calcium and/or magnesium to form thermodynamically stable solid carbonates (i.e., CaCO3, and MgCO3), and is currently being recognized as a promising method of both storing and utilizing CO2. In particular, industrial solid wastes such as steelmaking slags (steel and iron slags) are considered to be suitable alkaline feedstock for carbon mineralization. The aqueous carbon mineralization process of steelmaking slags generally includes the extraction of alkali earth metals in a low pH condition, followed by carbonation with CO2 at a high pH. However, since steelmaking slags often exhibit limited leachability depending on their physicochemical properties, it often has an important role in the design of the carbon mineralization process. Here, the leachability of the steel slag was examined in both acidic and basic conditions. The extraction kinetics as well as the various operating factors, such as temperature, and particle size distribution, under an acidic condition were also examined for the potential carbon sequestration using the alkaline wastes.
[References]
  1. Gadikota G, Nature Rev. Chem., 4, 78, 2020
  2. Chang R, Kim S, Lee S, Choi S, Kim M, Park Y, Front. Energy Res., 5, 17, 2017
  3. Moon S, Lee Y, Choi S, Hong S, Lee S, Park AHA, Park Y, Org. Process Res. Dev., 1723, 22, 2018
  4. Hong S, Sim G, Moon S, Park Y, Energy Fuels, 3532, 34, 2020
  5. Zhao H, Park Y, Lee DH, Park AHA, Phys. Chem. Chem. Phys., 15, 15185, 2013
  6. Teir S, Revitzer H, Eloneva S, Fogelholm CJ, Zevenhoven R, Int. J. Miner. Process., 83(1-2), 36, 2007
  7. Wang X, Maroto-Valer M, Energy Procedia, 4, 4930, 2011
  8. Teir S, Eloneva S, Fogelholm CJ, Zevenhoven R, Energy, 32(4), 528, 2007
  9. Rim G, Marchese AK, Stallworth P, Greenbaum SG, Park AHA, Chem. Eng. J., 396, 125204, 2020
  10. Park AHA, Jadhav R, Fan LS, Can. J. Chem. Eng., 81, 885, 2003
  11. Lekakh SN, Robertson DGC, Rawlins CH, Richards VL, Peaslee KD, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 39, 484, 2008
  12. Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer MM, Chem. Soc. Rev., 43, 8049, 2014
  13. World Steel Association, World steel in figures, Publications, Belgium (2020).
  14. Engstrom F, Larsson ML, Samuelsson C, Sandstrom A, Robinson R, Bjorkman B, Steel Res. Int., 85, 607, 2014
  15. Park AHA, Fan LS, Chem. Eng. Sci., 59(22-23), 5241, 2004
  16. Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA, Chem. Eng. J., 279, 615, 2015
  17. Ashbrook SE, Dawson DM, Nucl. Magn. Reson., 45, 1, 2016
  18. Hong S, Huang HD, Rim G, Park Y, Park AHA, ACS Sustain. Chem. Eng., 8(50), 18519, 2020
  19. Kim SJ, Takekawa J, Shibata H, Kitamura SY, Yamaguchi K, ISIJ Int., 53, 1715, 2013
  20. Nikolic I, Drincic A, Djurovic D, Karanovic L, Radmilovic VV, Radmilovic VR, Constr. Build. Mater., 108, 1, 2016
  21. Strohmeier BR, Surf. Interf. Anal., 15, 51, 1990
  22. Demri B, Muster D, J. Mater. Process. Technol., 55, 311, 1995
  23. Wagner CD, Passoja DE, Hillery HF, Kinisky TG, Six HA, Jansen WT, Taylor JA, J. Vacuum Sci. Technol., 21, 933, 1982
  24. Maraghechi H, Rajabipour F, Pantano CG, Burgos WD, Cem. Concr. Res., 87, 1, 2016
  25. Pan SY, Ling TC, Park AHA, Chiang PC, Aerosol Air Qual. Res., 18, 829, 2018
  26. Fogler HS, Elements of chemical reaction engineering, Practice Hall, Publications, New Jersey (2004).
  27. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS, Appl. Surf. Sci., 257(7), 2717, 2011
  28. Huijgen WJJ, Witkamp GJ, Comans RNJ, Environ. Sci. Technol., 39, 9676, 2005
  29. McCabe WL, Smith JS, Harriott P, Unit operations of chemical engineering, New York (2004).