Issue
Korean Journal of Chemical Engineering,
Vol.38, No.11, 2265-2278, 2021
Modelling and optimization of Fenton processes through neural network and genetic algorithm
Response surface methodology (RSM), multi-layer perceptron trained by Levenberg-Marquardt (MLPLM); multi-layer perception and Sigma-Pi neural networks trained by particle swarm optimization (PSO) were used to effectively and reliably predict the performance of Classical-Fenton and Photo-Fenton processes. H2O2 doses, Fe(II) doses, and H2O2/Fe(II) rates were determined as independent variables in batch reactors. The performance of models was compared by using RMSE and MAE error criteria. The performance of models was also evaluated in terms of some properties of regression analysis and scatter that showed high linear relationship between the predictions of SPPSO and the actual removal values. As a distinctive aspect of this study, SPNN trained by PSO was used for the first time in the literature in this area and the best predictive results for almost all cases were generated. Moreover, the genetic algorithm (GA) was applied for SP-PSO model results to determine the optimum values of the study. According to the results of GA, under the optimum conditions Photo-Fenton processes had higher performance in each experiment. Thereby, SP-PSO produced satisfactory prediction results without the need for any additional experiments in the case that experimental designs are difficult or costly for wastewater treatment.
[References]
  1. UNESCO, The United Nations World Water Development Report, 2003, pp. 92-3-103881-8.
  2. Jefferson B, Laine A, Parsons S, Stephenson T, Judd S, Urban Water, 1(4), 285, 2000
  3. Friedler E, Hadari M, Desalination, 190(1-3), 221, 2006
  4. Terechova EL, Zhang G, Chen J, Sosnina NA, Yang F, J. Environ. Chem. Eng., 2(4), 2111, 2014
  5. Mostafazadeh AK, Benguit AT, Carabin A, Drogui P, Brien E, J. Water Process Eng., 28, 277, 2019
  6. Patil VV, Gogate PR, Bhat AP, Ghosh PK, Sep. Purif. Technol., 239, 116594, 2020
  7. Ciabatti I, Cesaro F, Faralli L, Fatarella E, Tognotti F, Desalination, 245(1-3), 451, 2009
  8. Moura AGL, Centurion VB, Okada DY, Motteran F, Delforno TP, Oliveira VM, Varesche MBA, J. Environ. Manage., 251, 109495, 2019
  9. Dimoglo A, Sevim-Elibol P, Dinc O, Gokmen K, Erdogan H, J. Water Process Eng., 31, 100877, 2019
  10. Ge JT, Qu JH, Lei PJ, Liu HJ, Sep. Purif. Technol., 36(1), 33, 2004
  11. Choobar BG, Shahmirzadi MAA, Kargari A, Manouchehri M, J. Environ. Chem. Eng., 7(2), 103030, 2019
  12. Huang AK, Veit MT, Juchen PT, Goncalves GDC, Palacio SM, Cardoso CDO, J. Environ. Chem. Eng., 7(4), 103226, 2019
  13. Sumisha A, Arthanareeswaran G, Thuyavan YL, Ismail AF, Chakraborty S, Ecotoxicol. Environ. Saf., 121(2004), 174, 2015
  14. Turkay O, Barisci S, Sillanpaa M, J. Environ. Chem. Eng., 5(5), 4282, 2017
  15. Kim TH, Park C, Yang JM, Kim S, J. Hazard. Mater., 112(1-2), 95, 2004
  16. Li HY, Li YL, Xiang LJ, Huang QQ, Qiu JJ, Zhang H, Sivaiah MV, Baron F, Barrault J, Petit S, Valange S, J. Hazard. Mater., 287, 32, 2015
  17. Fernandes NC, Brito LB, Costa GG, Taveira SF, Cunha-Filho MSS, Oliveira GAR, Marreto RN, Chem. Biol. Interact., 291, 47, 2018
  18. Ertugay N, Acar FN, Arab. J. Chem., 10, S1158, 2017
  19. Poyatos JM, Munio MM, Almecija MC, Torres JC, Hontoria E, Osorio F, Water. Air. Soil Pollut., 205(1-4), 187, 2010
  20. Emami F, Tehrani-Bagha AR, Gharanjig K, Menger FM, Desalination, 257(1-3), 124, 2010
  21. Pazdzior K, Bilinska L, Ledakowicz S, Chem. Eng. J., 376, 120597, 2019
  22. Yolcu U, Jin Y, Egrioglu E, 2016 IEEE Symp. Ser. Comput. Intell. SSCI 2016 (2017).
  23. Yolcu U, Egrioglu E, Bas E, Yolcu OC, Dalar AZ, J. Exp. Theor. Artif. Intell., 33(3), 383, 2021
  24. Yolcu OC, Bas E, Egrioglu E, Yolcu U, Neural Process. Lett., 47(3), 1133, 2018
  25. Easturk E, Alver A, J. Environ. Manage., 248, 109300, 2019
  26. Elmolla ES, Chaudhuri M, Eltoukhy MM, J. Hazard. Mater., 179(1-3), 127, 2010
  27. Radwan M, Alalm MG, Eletriby H, J. Water Process Eng., 22, 155, 2018
  28. Sabour MR, Amiri A, Waste Manag., 65, 54, 2017
  29. Talwar S, Verma AK, Sangal VK, J. Environ. Manage., 250, 109428, 2019
  30. Tolba A, Alalm MG, Elsamadony M, Mostafa A, Afify H, Dionysiou DD, Process Saf. Environ. Prot., 128, 273, 2019
  31. Gholizadeh AM, Zarei M, Ebratkhahan M, Hasanzadeh A, J. Environ. Chem. Eng., 9, 104999, 2021
  32. Jaafarzadeh N, Ahmadi M, Amiri H, Yassin MH, Martinez SS, J. Taiwan Inst. Chem. Eng., 43(6), 873, 2012
  33. Baird RB, Eaton AD, Rice EW, Standard methods for the examination of water and wastewater, 23rd Ed., Washington, DC (2017).
  34. Werbos PJ, The roots of backpropagation, John Wiley & Sons, New York (1974).
  35. Shin Y, Gosh J, IJCNN-91-Seattle International Joint Conference on Neural Networks, 1, 13 (1991).
  36. Kennedy J, Eberhart R, Proceedings of IEEE international conference on neural networks, Australia, 1942 (1995).
  37. Holland JH, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, England (1992).
  38. Goldberg DE, Genetic algorithms in search, optimization and machine learning 13th Ed. Edition, United States (1989).