Issue
Korean Journal of Chemical Engineering,
Vol.38, No.10, 2141-2149, 2021
Preparation and evaluation of porous H1.6Mn1.6O4@chitosan pellet for Li+ extraction
Spinel-structured lithium manganese oxide is regarded as one of the most promising materials that can recover Li+ from brine and seawater. Herein, a hierarchical porous and hydrophilic H1.6Mn1.6O4@chitosan pellet (HMO@CP) is proposed and its mechanical property is tailored through the glutaraldehyde-derived cross-linking. Different characterization techniques such as scanning electron microscopy (SEM), Brunner-Emmet-Teller (BET) measurement, Fourier transformation infrared spectrum (FTIR), and X-ray diffraction (XRD) meter were used to investigate the chemical and morphological properties of the HMO@CP. H1.6Mn1.6O4 powders were successfully encapsulated by chitosan, forming composite porous pellets. The equilibrium adsorption capacity of HMO@CP is 49.2mg·g-1, which is similar to that of the pristine H1.6Mn1.6O4. Moreover, the adsorption behavior of HMO@CP well fits with the pseudosecond- order kinetic model, and the Langmuir model can be used to describe the adsorption isotherm of HMO@CP. Furthermore, the adsorption thermodynamic parameters such as ΔHθ, ΔGθ and ΔSθ were calculated based on the obtained results. When the pellet is immersed into 0.05mol·L-1 HCl solution after the Li+ adsorption process, the desorption equilibrium can be reached within 60 min, with a manganese dissolution loss of 2.48%. The Li+ adsorption capacity of HMO@CP remains at 41.92mg·g-1 after five adsorption-desorption cycles, confirming the effective regeneration property of the HMO@CP. In addition, the as-prepared HMO@CP shows excellent selectivity for Li+ among Na+, K+, Mg2+, and Ca2+ ions in the simulated solution.
[References]
  1. Ossai CI, Egwutuoha IP, Advanced Information Networking and Applications, 1151, 1474 (2020).
  2. Li X, Mo Y, Qing W, Shao S, Tang CY, Li J, J. Membr. Sci., 591, 117317, 2019
  3. Li Y, Zhang K, Chen Z, Wang Y, Wang L, Liang F, Yao Y, Nano., 15, 205000, 2020
  4. Weng D, Duan H, Hou Y, Huo J, Chen L, Zhang F, Wang J, Prog. Nat. Sci-Mater., 30, 5, 2020
  5. Razmjou A, Asadnia M, Hosseini E, Korayem AH, Chen V, Nat. Commun., 10, 5793, 2019
  6. Lee S, Park S, Rsc. Adv., 4, 21899, 2014
  7. Tian LY, Ma W, Han M, Chem. Eng. J., 156(1), 134, 2010
  8. Park MJ, Nisola GM, Beltran AB, Torrejos REC, Seo JG, Lee SP, Kim H, Chung WJ, Chem. Eng. J., 254, 73, 2014
  9. Xu X, Chen YM, Wan PY, Gasem K, Wang KY, He T, Adidharma H, Fan MH, Prog. Mater. Sci., 84, 276, 2016
  10. Li Y, Zhao Z, Liu X, Chen X, Zhong M, T. Nonferr. Metal. Soc., 25, 3484, 2015
  11. Wang C, Zhai Y, Wang X, Zeng M, Chem. Sci. Eng. English, 8, 471, 2014
  12. Ram P, Goren A, Ferdov S, Silva MM, Singhal R, Costa CM, Sharma RK, Lanceros-Mendez S, New J. Chem., 40, 6244, 2016
  13. Liu RTYJH, Electrochim. Acta., 180, 138, 2015
  14. Xiao JL, Nie XY, Sun SY, Song XF, Li P, Yu JG, Adv. Powder Technol., 26(2), 589, 2015
  15. Ji Z, Peng J, Yuan J, Jiao P, Wang J, Wang Z, Chinese J. Inorg. Chem., 12, 22, 2015
  16. Sun SY, Xiao JL, Wang J, Song XF, Yu JG, Ind. Eng. Chem. Res., 53(40), 15517, 2014
  17. Qian F, Zhao B, Guo M, Qian Z, Liu Z, Hydrometallurgy, 193, 105291, 2020
  18. Xue F, Wang B, Chen M, Yi C, Ju S, Xing W, Sep. Purif. Technol., 228, 115750, 2019
  19. Xiao JL, Sun SY, Song XF, Li P, Yu JG, Chem. Eng. J., 279, 659, 2015
  20. Xiao GP, Peng J, Zhang QH, Yu JG, Chinese J. Inorg. Chem., 26, 435, 2010
  21. Han Y, Kim H, Park J, Chem. Eng. J., 210, 482, 2012
  22. Umeno A, Miyai Y, Takagi N, Chitrakar R, Sakane K, Ooi K, Ind. Eng. Chem. Res., 41(17), 4281, 2002
  23. Sun D, Meng M, Yin Y, Zhu Y, Li H, Yan Y, J. Porous Mat., 23, 1411, 2016
  24. Chung KS, Lee JC, Kim WK, Kim SB, Cho KY, J. Membr. Sci., 325(2), 503, 2008
  25. Wei Y, Xie Z, Qi H, J. Membr. Sci., 601, 117842, 2020
  26. Ma L, Chen B, Chen Y, Shi X, Microporous Mesoporous Mater., 142, 147, 2011
  27. Hong HJ, Park IS, Ryu T, Ryu J, Kim BG, Chung KS, Chem. Eng. J., 234, 16, 2013
  28. Zargar V, Asghari M, Dashti A, Chembioeng Rev., 2, 204, 2015
  29. Han Z, Zeng X, Zhang Z, Liu Y, Xiong X, Int. J. Biol., 81, 638, 2015
  30. Ullah S, Zainol I, Idrus RH, Int. J. Biol. Macromol., 104, 1020, 2017
  31. Garnica-Palafox MI, Sanchez-Arevalo MF, Carbohydr. Polym., 151, 1073, 2016
  32. Ryu T, Haldorai Y, Rengaraj A, Shin J, Hong HJ, Lee GW, Han YK, Huh YS, Chung KS, Ind. Eng. Chem. Res., 55(26), 7218, 2016
  33. Ho YS, McKay G, Process Saf. Environ., 76, 332, 1998
  34. Lawagon CP, Nisola GM, Mun J, Tron A, Torrejos REC, Seo JG, Kim H, Chung WJ, J. Ind. Eng. Chem., 35, 347, 2016
  35. Shi X, Zhang Z, Zhou D, Zhang L, Chen B, Yu L, T. Nonferr. Metal. Soc., 23, 253, 2013
  36. Nisola GM, Limjuco LA, Vivas EL, Lawagon CP, Park MJ, Shon HK, Mittal N, Nah IW, Kim H, Chung WJ, Chem. Eng. J., 280, 536, 2015
  37. Zhou X, Zhou X, Chem. Eng. Commun., 201, 1459, 2014
  38. Canzano S, Iovino P, Salvestrini S, Capasso S, Water Res., 46, 4314, 2012
  39. Zhu GR, Wang P, Qi PF, Gao CJ, Chem. Eng. J., 235, 340, 2014
  40. Zhang L, Zhang YG, Appl. Surf. Sci., 316, 649, 2014
  41. Liu Y, Liu Y, Sep. Purif. Technol., 61(3), 229, 2008
  42. Liu Y, Xu H, Biochem. Eng. J., 35, 174, 2007
  43. Lima EC, Hosseini-Bandegharaei A, Moreno-Pirajan JC, Anastopoulos I, J. Mol. Liq., 273, 425, 2018
  44. Liu Y, J. Chem. Eng. Data, 54(7), 1981, 2009
  45. Wei Y, Jang CH, Sens. Actuators B-Chem., 254, 72, 2017
  46. Lucas AJDS, Oreste EQ, Costa HLG, Lopez HM, Prentice C, Food Chem., 343, 128550, 2020
  47. Chowdhury S, Mishra R, Saha P, Kushwaha P, Desalination, 265(1-3), 159, 2011
  48. Mohapatra M, Khatun S, Anand S, Chem. Eng. J., 155(1-2), 184, 2009