Issue
Korean Journal of Chemical Engineering,
Vol.38, No.10, 2129-2133, 2021
Synergistic effect of photoanode and photocathode modified with oxygenated multi-walled carbon nanotubes in dye-sensitized solar cells
Oxygenated multi-walled carbon nanotubes (OMWNTs) were employed as additives in conventional TiO2- based photoanodes and platinum-free conducting polymer-based photocathodes. The OMWNTs were induced to form covalent bonds with TiO2 nanoparticles (NPs) and were successfully intercalated into a poly (3, 4-ethylenedioxythiophene)- polystyrene sulfonate (PEDOT:PSS) network. Furthermore, a dye-sensitized TiO2-OMWNT-based photoanode and a PEDOT:PSS-OMWNT-based electrocatalytic photocathode were both assembled into a photoelectrochemical cell. Replacing the typical platinized photocathode with PEDOT:PSS-OMWNTs enhances the energy conversion efficiency by approximately 13.9% when compared to a typical dye-sensitized solar cell composed of FTO/TiO2/N719//Pt/ FTO. Similarly, a 25.6% increase in efficiency was observed by a spray-coated TiO2-OMWNT layer as the photoanode instead of simple anatase TiO2 NPs. In addition, 42.9% higher efficiency was achieved by utilizing the two OMWNTmodified electrodes together. This excellent performance is attributed to the synergistic effect of the OMWNT-modified photoanode and photocathode. This may be related to the effective suppression of unwanted back transport and recombination reactions.
[References]
  1. O'regan B, Gratzel M, Nature, 353, 737, 1991
  2. Mohammadi I, Zeraatpisheh F, Ashiri E, Abdi K, Int. J. Hydrog. Energy, 45(38), 18831, 2020
  3. Ramakrishnan VM, Pitchaiya S, Muthukumarasamy N, et al., Int. J. Hydrog. Energy, 45, 27036, 2020
  4. Sayahi H, Aghapoor K, Mohsenzadeh F, Morad MM, Darabi HR, Sol. Energy, 215, 311, 2021
  5. Mehmood U, Hussein IA, Harrabi K, Mekki MB, Ahmed S, Tabet N, Sol. Energy Mater. Sol. Cells, 140, 174, 2015
  6. Muduli S, Lee W, Dhas V, Mujawar S, Dubey M, Vijayamohanan K, Han SH, Ogale S, ACS Appl. Mater. Interfaces, 1, 2030, 2009
  7. Rhee YH, Lee CJ, Ko MJ, Jin JH, Min NK, J. Phys. Chem. C, 119, 9085, 2015
  8. Liu C, Li T, Zhang Y, Kong T, Zhuang T, Cui Y, Fang M, Zhu W, Wu Z, Li C, Microporous Mesoporous Mater., 287, 228, 2019
  9. Prakash J, Sun S, Swart HC, Gupta RK, Appl. Mater. Today, 11, 82, 2018
  10. Rajbongshi BM, Verma A, Mater. Lett., 232, 220, 2018
  11. Roose B, Pathak S, Steiner U, Chem. Soc. Rev., 44, 8326, 2015
  12. Song LX, Zhai JF, Du PF, Xiong J, Ko F, Thin Solid Films, 646, 44, 2018
  13. Unlu B, Ozacar M, Sol. Energy, 196, 448, 2020
  14. Gao N, Wan T, Xu Z, Ma L, Ramakrishna S, Liu Y, Mater. Chem. Phys., 255, 123542, 2020
  15. Mathew A, Rao GM, Munichandraiah N, Mater. Res. Bull., 46(11), 2045, 2011
  16. Pringle JM, Armel V, MacFarlane DR, Chem. Commun., 46, 5367, 2010
  17. Hong W, Xu Y, Lu G, Li C, Shi G, Electrochem. Commun., 10, 1555, 2008
  18. Lee KM, Hu CW, Chen HW, Ho KC, Sol. Energy Mater. Sol. Cells, 92(12), 1628, 2008
  19. Chang M, Wu L, Li X, Xu W, J. Mater. Sci. Technol., 28, 594, 2012
  20. Kongkanand A, Dominguez RM, Kamat PV, Nano Lett., 7, 676, 2007
  21. Song CB, Qiang YH, Zhao YL, Gu XQ, Song DM, Zhu L, Appl. Surf. Sci., 305, 792, 2014
  22. Rhee YH, Ahn DJ, Ko MJ, Jin HY, Jin JH, Min NK, Electrochim. Acta, 146, 68, 2014
  23. Rhee Y, Ko M, Jin H, Jin JH, Min NK, Jpn. J. Appl. Phys., 53, 08NJ02, 2014
  24. Ejigu A, Lovelock KRJ, Licence P, Walsh DA, Electrochim. Acta, 56(28), 10313, 2011
  25. Bisquert J, Belmonte GG, Santiago FF, Ferriols NS, Yamashita M, Pereira EC, Electrochem. Commun., 2, 601, 2000
  26. Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A, Sol. Energy Mater. Sol. Cells, 87(1-4), 117, 2005
  27. Park NG, Kim KM, Kang MG, Ryu KS, Chang SH, Shin YJ, Adv. Mater., 17(19), 2349, 2005
  28. Wang Q, Moser JE, Gratzel M, J. Phys. Chem. B, 109(31), 14945, 2005