Issue
Korean Journal of Chemical Engineering,
Vol.38, No.10, 2091-2105, 2021
Utilization of geothermal waste as a silica adsorbent for biodiesel purification
The purification process of biodiesel requires an adsorbent to reduce glycerin content releasing high purity of biodiesel. The adsorbent must be affordable in source and process, readily available, and have high adsorption capacity. This paper discusses utilization of silica aerogel from geothermal waste as an adsorbent of biodiesel to reduce glycerin. The paper investigates the potential of a high silica content of geothermal waste as silica adsorbent by observation of the glycerin adsorption capacity and its kinetics study. At the beginning, geothermal silica preparation was subjected to the purification of geothermal silica waste using sulfuric acid, sol-gel process, and drying process at ambient pressure. This research was statistically carried out by varying the volume ratio of HCl to sodium silicate (3-5), drying time (1-2 hours), and percent weight of silica (3-5%-w) using Design-Expert® Version 8.0.6 (State-Ease, Inc). The silica product was characterized through BET, FTIR, XRF, and XRD analysis. Analysis of untreated and treated biodiesel used GPC, GCMS, and titration based on Indonesian National Standard (SNI) of No. 06-1564-1995. The optimum conditions for preparation for removing glycerin in biodiesel was reached at ratio volume of HCl to sodium silicate of 3 : 1, 2 hours of drying time, and 3%-w silica adsorbent. The optimum of surface area of the s ilica adsorbent and the glycerin adsorption capacity can be attained at 371m2/g glycerin and 10±0.1 mg/g, respectively. Further meaning, the glycerin concentration in biodiesel can be reduced from (4±0.10)% to (0.1±0.01)% by using the silica adsorbent performing biodiesel characterization according to SNI in terms of glycerin content. The second-order pseudo model can be used to describe the glycerin adsorption in biodiesel by determination of k at 0.0036 g/mg min at the optimum condition preparation.
[References]
  1. Kumar M, Sharma MP, Renew. Sust. Energ. Rev., 56, 1129, 2016
  2. Pan SY, Li CW, Huang YZ, Fan C, Tai YC, Chen YL, Bioresour. Technol., 318, 124045, 2020
  3. Yu KL, Chen WH, Sheen HK, Chang JS, Lin CS, Ong HC, Show PL, Ling TC, Fuel, 279, 118435, 2020
  4. Yusuff AS, Owolabi JO, South African J. Chem. Eng., 30, 42, 2019
  5. Jacob A, Ashok B, Alagumalai A, Chyuan OH, Le PTK, Energy Conv. Manag., 228, 113655, 2020
  6. Janaun J, Ellis N, Renew. Sust. Energ. Rev., 14, 1312, 2010
  7. Kansedo J, Lee KT, Bhatia S, Biomass Bioenerg., 33(2), 271, 2009
  8. Gashaw A, Teshita A, Int. J. Renew. Sustain. Energy, 3, 92, 2014
  9. Yu MJ, Jo YB, Kim SG, Lim YK, Jeon JK, Park SH, Kim SS, Park YK, Korean J. Chem. Eng., 28(12), 2287, 2011
  10. Lee JH, Kim SB, Yoo HY, Lee JH, Han SO, Park C, Kim SW, Korean J. Chem. Eng., 30(6), 1335, 2013
  11. Avinash A, Sasikumar P, Pugazhendhi A, Renew. Sust. Energ. Rev., 134, 110250, 2020
  12. Saravanakumar A, Avinash A, Saravanakumar R, Energy Sources Part A-Recovery Util. Environ. Eff., 38(17), 2524, 2016
  13. Agarwal M, Chauhan G, Chaurasia SP, Singh K, J. Taiwan Inst. Chem. Eng., 43, 89, 2012
  14. Tacias-Pascacio VG, Torrestiana-Sanchez B, Dal Magro L, Virgen-Ortiz JJ, Suarez-Ruiz FJ, Rodrigues RC, Fernandez-Lafuente R, Renew. Energy, 135, 1, 2019
  15. Avinash A, Murugesan A, Sci. Rep., 7, 1, 2017
  16. Pitakpoolsil W, Hunsom M, J. Environ. Manage., 133, 284, 2014
  17. Kumar LR, Yellapu SK, Tyagi RD, Biodiesel production: technologies and future prospects, American Society of Civil Engineers, Washington (2019).
  18. Pisarello ML, Costa BOD, Veizaga NS, Querini CA, Ind. Eng. Chem. Res., 49(19), 8935, 2010
  19. Faccini CS, Da Cunha ME, Moraes MSA, Krause LC, et al., J. Braz. Chem. Soc., 22, 558, 2011
  20. Cruz MCP, Ravagnani SP, Brogna FMS, et al., Biotechnol. Appl. Biochem., 40, 243, 2004
  21. Berrios M, Skelton RL, Chem. Eng. J., 144(3), 459, 2008
  22. Manique MC, Faccini CS, Onorevoli B, Benvenutti EV, Caramao EB, Fuel, 92(1), 56, 2012
  23. Santos FD, da Conceicao LRV, Ceron A, de Castro HF, Appl. Clay Sci., 149, 41, 2017
  24. Gomes MG, Santos DQ, de Morais LC, Pasquini D, Fuel, 155, 1, 2015
  25. Squissato AL, Fernandes DM, Sousa RMF, Cunha RR, et al., Cellulose, 22, 1263, 2015
  26. Catarino M, Ferreira E, Dias APS, Gomes J, Chem. Eng. J., 386, 123930, 2020
  27. Santos FD, Rafael L, Conceicao V, Giordani DS, De Castro HF, Int. J. Eng. Res. Sci., 2, 34, 2016
  28. Yori JC, D'Ippolito SA, Pieck CL, Vera CR, Energy Fuels, 21(1), 347, 2007
  29. Predojevic ZJ, Fuel, 87(17-18), 3522, 2008
  30. Mazzieri VA, Vera CR, Yori JC, Energy Fuels, 22(6), 4281, 2008
  31. Ahmaruzzaman M, Gupta VK, Ind. Eng. Chem. Res., 50(24), 13589, 2011
  32. Purnomo A, Dalanta F, Oktaviani AD, Silviana S, AIP Conf. Proc., 2026, 020077, 2018
  33. Silviana S, Noorpasha A, Rahman MM, Civ. Eng. Archit., 8, 281, 2020
  34. Silviana S, Darmawan A, Janitra AA, Ma’ruf A, Triesty I, Int. J. Emerg. Trends Eng. Res., 8, 4854, 2020
  35. Musino D, Impact of surface modification on the structure and dynamics of silica-polymer nanocomposites, PhD diss., Universite Montpellier (2018).
  36. Alswieleh AM, J. Chem., 2020, 1, 2020
  37. Sarikhani K, Jeddi K, Thompson RB, Park CB, Chen P, Langmuir, 31(20), 5571, 2015
  38. Nguyen HKD, Hoang PT, Dinh NT, J. Braz. Chem. Soc., 29, 1714, 2018
  39. Pal N, Mandal A, Chem. Eng. Sci., 226, 115887, 2020
  40. Saengprachum N, Pengprecha S, Int. Conf. Life Sci. Eng., 45, 17, 2012
  41. da Silva SR, de Albuquerque NJA, de Almeida RM, de Abreu FC, Materials, 10, 1132, 2017
  42. Raja SL, J. Chem. Nat. Resour., 1, 88, 2019
  43. Kaya GG, Deveci H, J. Ind. Eng. Chem., 89, 13, 2020
  44. Perdigoto MLN, Martins RC, Rocha N, Quina MJ, Gando-Ferreira L, Patricio R, Duraes L, J. Colloid Interface Sci., 380, 134, 2012
  45. Moon JH, Ahn H, Hyun SH, Lee CH, Korean J. Chem. Eng., 21(2), 477, 2004
  46. Ryu J, Kim SM, Choi JW, Ha JM, Ahn DJ, Suh DJ, Suh YW, Catal. Commun., 29, 40, 2012
  47. Gurav JL, Jung IK, Park HH, Kang ES, Nadargi DY, J. Nanomater., 2010, 1, 2010
  48. Motahari S, Nodeh M, Maghsoudi K, Desalin. Water Treat., 57, 16886, 2016
  49. Li C, Zhu J, Zhou M, Zhang S, He X, Materials, 12, 1782, 2019
  50. Nah HY, Parale VG, Jung HNR, Lee KY, Lim CH, Ku YS, Park HH, J. Sol-Gel Sci. Technol., 85, 302, 2018
  51. Rao AV, Kulkarni MM, Amalnerkar DP, Seth T, Appl. Surf. Sci., 206(1-4), 262, 2003
  52. Zabeti M, Daud WMAW, Aroua MK, Fuel Process. Technol., 91(2), 243, 2010
  53. Bangi UKH, Rao AV, Rao AP, Sci. Technol. Adv. Mater., 9, 035006, 2008
  54. Li J, Wan C, Lu Y, Sun Q, Front. Agric. Sci. Eng., 1, 46, 2014
  55. Pambudi NA, Itoi R, Yamashiro R, Alam BYCS, Tusara L, Jalilinasrabady S, Khasani J, Geothermics, 54, 109, 2015
  56. Silviana S, et al., Proceeding of Seminar Teknologi Hijau 2, 1, 341 (2017).
  57. Silviana S, Sanyoto GJ, Darmawan A, Sutanto H, Rasayan J. Chem., 13, 1692, 2020
  58. Silviana S, Rambe INH, Sudrajat H, Zidan MA, AIP Conf. Proc., 2202, 020069, 2019
  59. Silviana S, Darmawan A, Subagio A, Dalanta F, ASEAN J. Chem. Eng., 19, 91, 2019
  60. Silviana S, Darmawan A, Dalanta F, Subagio A, Hermawan F, Santoso HM, Materials, 14, 1, 2021
  61. Affandi S, Setyawan H, Winardi S, Purwanto A, Balgis R, Adv. Powder Technol., 20(5), 468, 2009
  62. Lee SE, Ahn YS, Lee JS, Cho CH, Hong CK, Kwon OH, J. Ceram. Process. Res., 18, 777, 2017
  63. Furqon F, Nugroho AK, Anshorulloh MK, Rona Tek. Pertan., 12, 22, 2019
  64. Alves MJ, Cavalcanti IV, de Resende MM, Cardoso VL, Reis MH, Ind. Crop. Prod., 89, 119, 2016
  65. Van Gerpen J, et al., Biodiesel analytical methods: August 2002-January 2004, National Renewable Energy Lab., United States (2004).
  66. De Castro Vasques E, Tavares CRG, Yamamoto CI, Mafra MR, Igarashi-Mafra L, Environ. Technol., 34, 2361, 2013
  67. Azmi MA, Ismail NAA, Rizamarhaiza M, Hasif AAKWM, Taib H, AIP Conf. Proc., 1756, 020005, 2016
  68. Music S, Filipovic-Vincekovic N, Sekovanic L, Brazilian J. Chem. Eng., 28, 89, 2011
  69. Anderson AM, Carroll MK, in Aerogels handbook, Adv. Sol-Gel Deriv. Materials Technol., New York (2011).
  70. Tamon H, Kitamura T, Okazaki M, J. Colloid Interface Sci., 197(2), 353, 1998
  71. Lazrag M, Lemaitre C, Castel C, Hannachi A, Barth D, J. Supercrit. Fluids, 140, 394, 2018
  72. Bajorath J, Chemoinformatics: Concepts, methods, and tools for drug discovery, Humana Press, New Jersey (2004).
  73. Apostolopoulou-Kalkavoura V, Munier P, Bergstrom L, Adv. Mater., 2001839, 1, 2020
  74. Ashraf MA, Peng W, Zare Y, Rhee KY, Nanoscale Res. Lett., 13, 1, 2018
  75. Soytas SH, Oguz O, Menceloglu YZ, in Polymer composites with functionalized nanoparticles, Elsevier (2018).
  76. Karamikamkar S, Naguib HE, Park CB, Adv. Colloid Interface Sci., 276, 102101, 2020
  77. Jeon C, Kwang HP, Water Res., 39, 3938, 2005
  78. Manuale DL, Greco E, Clementz A, Torres GC, Vera CR, Yori JC, Chem. Eng. J., 256, 372, 2014
  79. Martin LS, Ceron A, Oliveira PC, Zanin GM, de Castro HF, J. Ind. Eng. Chem., 62, 462, 2018
  80. Danish M, Mumtaz MW, Fakhar M, Rashid U, Chiang Mai J. Sci., 44, 1570, 2017
  81. Fuller MP, Ritter GL, Draper CS, Appl. Spectrosc., 42, 217, 1988
  82. Kongjao S, Damronglerd S, Hunsom M, Korean J. Chem. Eng., 27(3), 944, 2010
  83. Stuart BH, Infrared spectroscopy: Fundamentals and applications, John Wiley & Sons, Ltd, Chichester (2005).
  84. Raheem I, Mohiddin MNB, Tan YH, Kansedo J, Mubarak NM, Abdullah MO, Ibrahim ML, J. Ind. Eng. Chem., 91, 54, 2020
  85. Chairgulprasert V, Madlah P, Sci. Technol. Asia, 23, 1, 2018