Issue
Korean Journal of Chemical Engineering,
Vol.38, No.10, 2072-2081, 2021
Slow-rate devolatilization of municipal sewage sludge and texture of residual solids
Ash-rich sludge samples originating in four large plants were analyzed and employed to explore primarily the kinetics and the chemistry of devolatilization. A gravimetric, slowly increasing-temperature method was used in the range 298-1,123 K in a milieu of nitrogen. As an intricate combination of numerous (bio)organic and inorganic compounds, the dry sludge commences devolatilizing at approximately 418 K. The bulk of organic matter is released up to 823 K, at the rate becoming very slow thereafter. Basic constituents of the product gas are CO2, CO, H2, and CH4 with undesired nitrogenous, sulfurous, and chloro compounds. The residual solids contain significant amounts of organic matter/carbon and, on account of their favorable textural characteristics, they can be viewed as promising sorbents or catalysts. Kinetic triad was inferred from the experimental data: the model is well-capable of simulating the process of devolatilization and can be used for design considerations. An explicit equation, based upon a tractable approximation to the temperature integral (for [E/(RT)]≥0.1), has been verified and proposed for predicting the maximum reaction rate temperature. Remarkable differences in thermal behavior were explored in detail between the sludge and the alkali bicarbonates.
[References]
  1. Zenz D, in Municipal sewage sludge management: A reference text on processing, utilization and disposal, Vol. 4, 2nd Ed., Technomic, Lancaster (1998).
  2. Werther J, Ogada T, Prog. Energ. Combust. Sci., 25, 55, 1999
  3. Hartman M, Svoboda K, Pohorely M, Trnka O, Ind. Eng. Chem. Res., 44(10), 3432, 2005
  4. Hartman M, Pohorely M, Trnka O, Powder Technol., 178(3), 166, 2007
  5. Magdziarz A, Werle S, Waste Manage., 34, 174, 2014
  6. Syed-Hassan SSA, Wang Y, Hu S, Su S, Xiang J, Renew. Sust. Energ. Rev., 80, 888, 2017
  7. Svoboda K, Pohorely M, Hartman M, Martinec J, Fuel Process. Technol., 90(5), 629, 2009
  8. Petersen I, Werther J, Chem. Eng. Process., 44(7), 717, 2005
  9. Liu G, Wright MM, Zhao Q, Brown RC, ACS Sustain. Chem. Eng., 4, 1819, 2016
  10. Abrego J, Sanchez JL, Arauzo J, Fonts I, Gil-Lalaguna N, Atienza-Martinez M, Energy Fuels, 27(2), 1026, 2013
  11. Fonts I, Gea G, Azuara M, Abrego J, Arauzo J, Renew. Sust. Energ. Rev., 16, 2781, 2012
  12. Scott SA, Davidson JF, Dennis JS, Hayhurst AN, Chem. Eng. Sci., 62(1-2), 584, 2007
  13. Stammbach MR, Kraaz B, Hagenbucher R, Richarz W, Energy Fuels, 3, 255, 1989
  14. Kistler RC, Widmer F, Brunner PH, Environ. Sci. Technol., 21, 704, 1987
  15. Piskorz J, Scott DS, Westerberg IB, Ind. Eng. Chem. Process Des. Dev., 25, 265, 1986
  16. Bandosz TJ, Block K, Appl. Catal. B: Environ., 67(1-2), 77, 2006
  17. Pyle DL, Zaror CA, Chem. Eng. Sci., 39, 147, 1984
  18. Poudel J, Ohm TI, Lee SH, Oh SC, Waste Manage., 40, 112, 2015
  19. Atienza-Martinez M, Mastral JF, Abrego J, Ceamanos J, Gea G, Energy Fuels, 29(1), 160, 2015
  20. Atienza-Martinez M, Fonts I, Abrego J, Ceamanos J, Gea G, Chem. Eng. J., 222, 534, 2013
  21. Dhungana A, Dutta A, Basu P, Can. J. Chem. Eng., 90(1), 186, 2012
  22. Hartman M, Trnka O, AIChE J., 54(7), 1761, 2008
  23. Scott SA, Dennis JS, Davidson JF, Hayhurst AN, Chem. Eng. Sci., 61(8), 2339, 2006
  24. Urban DL, Antal MJ, Fuel, 61, 799, 1982
  25. Conesa JA, Marcilla A, Prats D, Rodriguez-Pastor M, Waste Manage. Res., 15, 293, 1997
  26. Dumpelmann R, Richarz W, Stammbach MR, Can. J. Chem. Eng., 69, 953, 1991
  27. Biagini E, Lippi F, Petarca L, Tognotti L, Fuel, 81(8), 1041, 2002
  28. Scott SA, Dennis JS, Davidson JF, Hayhurst AN, Fuel, 85(9), 1248, 2006
  29. Coats AW, Redfern JP, Nature, 201, 68, 1964
  30. Schlomilch O, Compendium der hoheren analysis, 2.-4. Aufl., 2 Bde., Vieweg & Sohn, Braunschweig (1874).
  31. Doyle CD, Nature, 207, 290, 1965
  32. Lee TV, Beck SR, AIChE J., 30, 517, 1984
  33. Cai JM, Yao FS, Yi WM, He F, AIChE J., 52(4), 1554, 2006
  34. Senum GI, Yang RT, J. Therm. Anal., 11, 445, 1977
  35. Vallet P, Tables numeriques permettant l´integration des constantes de vitess par rapport a la temperature, Gauthier-Villars, Paris (1961).
  36. Hartman M, Svoboda K, Cech B, Pohorely M, Syc M, Ind. Eng. Chem. Res., 58(8), 2868, 2019
  37. Hartman M, Svoboda K, Pohorely M, Syc M, Ind. Eng. Chem. Res., 52(31), 10619, 2013
  38. Othman MR, Park YH, Ngo TA, Kim SS, Kim J, Lee KS, Korean J. Chem. Eng., 27(1), 163, 2010
  39. Barin I, Platzki G, Thermochemical data of pure substances, 3rd Ed., VCH, Weinheim (1995).
  40. Hartman M, Martinovsky A, Chem. Eng. Commun., 111, 149, 1992
  41. Remy H, Lehrbuch der anorganischen chemie, Band I, 12th Ed., Geest & Portig, Leipzig (1965).
  42. Johnston J, J. Am. Chem. Soc., 32, 938, 1910