Issue
Korean Journal of Chemical Engineering,
Vol.38, No.10, 2009-2019, 2021
10-m long slim sandpack experiments to investigate gel system transport behavior in porous media
Understanding the transport behavior of a gel system in porous media is of great significance in enhancing oil recovery (EOR) for high water cut oil reservoirs. However, the length of the experiment models (sandpack or core sample) in current studies is usually in the range of centimeter scale, which is too short to track the full movement path of gel particles. In this work, 10-m long slim sandpacks were adopted to conduct gel flooding experiments. The pressure and polymer concentration distribution along the sandpack was tracked, and scanning electron microscope (SEM) technique was employed to observe the pore morphology after the gel flooding. The results show that the movement of polymer particles is usually within 7m away from the inlet due to the adsorption and retention in the porous medium. For 0.4 PV injection cases, SEM images show that the pore morphology at the inlet region exhibits a stable polymer network, while the network structure disappears at the outlet, along with the decrease of fluid viscosity from 620.1mPa·s to 1.2mPa·s. However, we can still find the stringy state polymer after 5m movement and the viscosity is 584.0mPa·s for 1 PV gel injection cases. Four characterization parameters, including equivalent viscosity, breakthrough pressure gradient, dimensionless gelation gradient, and plugging ratio, were proposed to quantitatively characterize the performance of gel flooding. In addition, empirical models were also obtained to predict the four parameters through multi-parameters fitting, and these models facilitate the characterization of the gel flooding performance. This is the first work, to the best of the authors’ knowledge, using long slim sandpack (10m) to experimentally study gel system transport in porous media, which provides theoretical implications in enhancing oil recovery.
[References]
  1. Bai B, Zhou J, Yin M, Pet. Explor. Dev., 42, 532, 2015
  2. Alvarado V, Manrique E, Energies, 9, 1529, 2010
  3. Seright RS, Lane RH, Sydansk RD, SPE Prod. Facil., 18, 158, 2003
  4. Lu X, Cao B, Xie K, Cao W, Liu Y, Zhang Y, Wang X, Zhang J, Pet. Explor. Dev., 48(1), 169, 2021
  5. Imqam A, Bai BJ, Fuel, 148, 178, 2015
  6. Tongwa P, Bai B, J. Pet. Sci. Eng., 124, 35, 2014
  7. Abdulbaki M, Huh C, Sepehrnoori K, Delshad M, Varavei A, J. Pet. Sci. Eng., 122, 741, 2014
  8. Choi SK, Sharma MM, Bryant S, Huh C, SPE Reservoir Eval. Eng., 13, 926, 2010
  9. Duran-Valencia C, Bai B, Reyes H, Fajardo-Lopez R, Barragan-Aroche F, Lopez-Ramirez S, Polym. J., 46, 277, 2014
  10. Seright R, SPE J., 12, 59, 1997
  11. Imqam A, Bai B, Ramadan MA, Wei M, Delshad M, Sepehrnoori K, SPE J., 20, 1083, 2015
  12. Saghafi H, Naderifar A, Gerami S, Farasat A, Iran. J. Chem. Chem. Eng., 35, 83, 2016
  13. Brattekas B, Graue A, Seright R, SPE Reservoir Eval. Eng., 19, 331, 2016
  14. Imqam A, Bai B, Wei M, Elue H, Muhammed FA, SPE Prod. Oper., 31, 247, 2016
  15. Yao CJ, Lei GL, Li L, Gao XM, Energy Fuels, 26(8), 5092, 2012
  16. Zhang H, Challa RS, Bai BJ, Tang XF, Wang JL, Ind. Eng. Chem. Res., 49(23), 12284, 2010
  17. Zhang T, Javadpour F, Yin Y, Li X, Water Resour. Res., 56, e2019WR026007 (2020).
  18. Qi P, Ehrenfried DH, Koh H, Balhoff MT, SPE J., 22, 447, 2017
  19. Muhammed FA, Bai BJ, Tang TJ, J. Pet. Sci. Eng., 99, 159, 2012
  20. Bai B, Li L, Liu Y, Liu H, Wang Z, You C, SPE Reservoir Eval. Eng., 10, 415, 2007
  21. Saghafi HR, Naderifar A, Gerami S, Emadi MA, Can. J. Chem. Eng., 94(10), 1880, 2016
  22. Hua Z, Lin M, Guo J, Xu F, Li Z, Li M, J. Pet. Sci. Eng., 105, 70, 2013
  23. Imqam A, Wang Z, Bai B, J. Pet. Sci. Eng., 156, 51, 2017
  24. Zamani A, Maini B, J. Pet. Sci. Eng., 69, 71, 2009
  25. Cozic C, Rousseau D, Tabary R, Broadening the application range of water shutoff/conformance-control microgels, SPE Annual Technical Conference and Exhibition (2008).
  26. Bai B, Zhang H, SPE J., 16, 388, 2011
  27. Jia H, Zhao JZ, Jin FY, Pu WF, Li YM, Li KX, Li JM, Ind. Eng. Chem. Res., 51(38), 12155, 2012
  28. Sang Q, Li YJ, Yu L, Li ZQ, Dong MZ, Fuel, 136, 295, 2014
  29. Feng Q, Chen X, Zhang G, Transp. Porous Media, 97, 67, 2013
  30. Cohen Y, Christ FR, SPE Reservoir Eval. Eng., 1, 113, 1986
  31. Wu Y, Bai B, Modeling particle gel propagation in porous media, SPE Annual Technical Conference and Exhibition (2008).
  32. Farasat A, Sefti MV, Sadeghnejad S, Saghafi HR, Korean J. Chem. Eng., 34(5), 1509, 2017
  33. Li M, Romero-Zeron L, Marica F, Balcom BJ, Energy Fuels, 31(5), 4904, 2017
  34. Saghafi HR, Emadi MA, Farasat A, Arabloo M, Naderifar A, Chem. Eng. Res. Des., 112, 175, 2016
  35. Gruesbeck C, Collins RE, SPE J., 22, 847, 1982
  36. Bai B, Liu Y, Coste JP, Li L, SPE Reservoir Eval. Eng., 10, 176, 2007
  37. Wang J, Liu H, Wang Z, Hou P, Transp. Porous Media, 94, 69, 2012
  38. Goudarzi A, Zhang H, Varavei A, Taksaudom P, Hu YP, Delshad M, Bai BJ, Sepehrnoori K, Fuel, 140, 502, 2015
  39. Farasat A, Sefti MV, Sadeghnejad S, Saghafic HR, J. Pet. Sci. Eng., 157, 441, 2017
  40. Zhao G, Li JM, Gu CL, Li L, Sun YP, Dai CL, Energy Fuels, 32(11), 11317, 2018
  41. Varel FT, Dai C, Shaikh A, Zhao G, Li J, Sun N, Yang N, Colloids Surf. A: Physicochem. Eng. Asp., 610, 125642, 2020
  42. Cui C, Zhou Z, He Z, J. Pet. Sci. Eng., 195, 107908, 2020
  43. Gibbons MK, Ormeci B, J. Water Supply: Res. Technol-AQUA, 62, 205, 2013