Issue
Korean Journal of Chemical Engineering,
Vol.38, No.10, 1983-2002, 2021
Deep-learning modeling and control optimization framework for intelligent thermal power plants: A practice on superheated steam temperature
The operational flexibility requirement has brought great challenges to control systems of thermal power plants. Through the big data and deep-learning technology, intelligent thermal power plant can greatly improve the quality of deep peak-load regulation. Based on the framework of an intelligent thermal power plant, this paper proposes a control optimization framework by constructing a hybrid deep-learning simulation model adaptable for multiple disturbances and wide operational range. First, Gaussian naive Bayes is utilized to classify data for identification, in conjunction with prediction error method for fine data extraction. Second, deep long-short term memory is explored to fully learn extracted data attributes and identify the dynamic model. Third, based on the simulation model, two aspects are considered for control optimization: i) For a variety of immeasurable disturbances in thermal processes, the extended state observer is employed for disturbance rejection, and ii) as a widely used heuristic algorithm, particle swarm optimization is applied to optimize the parameters of controllers. Superheated steam temperature (SST) control system is the key system to maintain the safety and efficiency of a power plant; thus the proposed deep learning modeling and control optimization method is applied on the SST system of a 330MW power plant in Nanjing, China. Simulation results compared with actual data and the index analysis demonstrated the effectiveness and superiority of the proposed method.
[References]
  1. Nielsen RF, Nazemzadehm N, Sillesen LW, Andersson M, Gernaey K, Mansouri SS, Comput. Chem. Eng., 140, 106916, 2020
  2. Najar AM, Arif DK, J. Phys.: Conference Series, 1218, 012055, 2019
  3. Fang C, Xiao D, Process identification, Tsinghua University Press, Beijing (1988).
  4. Zheng S, Zhao J, Comput. Chem. Eng., 135, 106755, 2020
  5. Guo Y, Wang N, Xu Z, Wu K, Mechanical Syst. Signal Process., 142, 106630, 2020
  6. Zheng Q, Li YF, Cao J, Comput. Commun., 163, 84, 2020
  7. Zhang Y, Sun J, 2nd International conference on electrical, computer engineering and electronics, 996-1001 (2015).
  8. Chen C, Zhang G, Tarefder R, Ma J, Wei H, Guan H, Accident Anal. Prevention, 80, 76, 2015
  9. Feng J, He X, Wang P, Comput. Digital Eng., 45, 2244, 2017
  10. Nuo Y, Int. J. Appl. Dec. Sci., 11, 1, 2018
  11. Adedipe T, Shafiee M, Zio E, Reliability Eng. Syst. Saf., 202, 107053, 2020
  12. Marlis OO, Agustin LC, Giancarlo V, Rainer G, Mitchell VS, Neuroimage, 163, 471, 2017
  13. Abdalmoaty MR, Hjalmarsson H, Automatica, 105, 49, 2019
  14. Maruta I, Sugie T, IFAC-PapersOnLine, 51, 479, 2018
  15. Yu W, Kim IY, Mechefske C, Mechanical Syst. Signal Process., 149, 107322, 2021
  16. Rao G, Huang W, Feng Z, Cong Q, Neurocomputing, 308, 49, 2018
  17. Rahman M, Islam D, Mukti RJ, Saha I, Computational Biol. Chem., 88, 107329, 2020
  18. Zhang Z, Lv Z, Gan C, Zhu Q, Neurocomputing, 410, 304, 2020
  19. Yan HR, Qin Y, Xiang S, Chen H, Measurement, 165, 108205, 2020
  20. Chen Y, Optik, 220, 164869, 2020
  21. Fan H, Su Z, Wang P, Lee KY, Appl. Therm. Eng., 170, 114912, 2020
  22. Fu H, Pan L, Xue Y, Sun L, Li D, Lee KY, Wu Z, He T, Zheng S, IFAC-PapersOnLine, 50, 3227, 2017
  23. Zhang J, Zhang F, Ren M, Hou G, Fang F, ISA Trans., 51, 778, 2012
  24. Xiao FL, Zhang JH, Zhu DY, Zhang C, IFAC Proceedings Volumes, 34, 505, 2001
  25. Nahlovsky T, Procedia Eng., 100, 1547, 2015
  26. Chen C, Pan L, Liu S, Sun L, Lee KY, Sustainability, 10, 4824, 2018
  27. Hui J, Ge S, Ling J, Yuan J, Annals Nuclear Energy, 143, 107417, 2020
  28. Chen C, Zhang K, Yuan K, Wang W, IFAC-PapersOnLine, 50, 4388, 2017
  29. Zhang F, Wu X, Shen J, Appl. Therm. Eng., 118, 90, 2017
  30. Yuan GH, Yang WX, Energy, 183, 926, 2019
  31. Jagtap HP, Bewoor AK, Kumar R, Ahmadi MH, Chen L, Reliability Eng. Syst. Saf., 204, 107130, 2020
  32. Pesaran HM, Nazari-Heris M, Mohammadi-Ivatloo B, Seyedi H, Energy, 209, 118218, 2020
  33. Xi H, Liao P, Wu X, Appl. Therm. Eng., 184, 116287, 2021
  34. Song W, Cattani C, Chi CH, Energy, 194, 116847, 2020
  35. Gelman A, Goodrich B, Gabry J, Vehtari A, The American Statistician, 73, 307, 2019
  36. Sun L, Li DH, Hu KT, Lee KY, Pan FP, Ind. Eng. Chem. Res., 55(23), 6686, 2016
  37. Astrom KJ, Hagglund T, Advanced PID control, International society of automation, Pittsburgh (2006).
  38. Tang D, Gao Z, Zhang X, Control Theory & Applications, 34, 101 (2017).
  39. Xu Q, Sun M, Chen Z, Zhang D, In Proceedings of the 32nd Chinese Control Conference, 5408 (2013).
  40. Hard O, J. Appl. Statistics, 36, 1109, 2009