Issue
Korean Journal of Chemical Engineering,
Vol.38, No.10, 1971-1982, 2021
Machine learning-based discovery of molecules, crystals, and composites: A perspective review
Machine learning based approaches to material discovery are reviewed with the aim of providing a perspective on the current state of the art and its potential. Various models used to represent molecules and crystals are introduced and such representations can be used within the neural networks to generate materials that satisfy specified physical features and properties. For problems where large database for structure-property map cannot be created, the active learning approaches based on Bayesian optimization to maximize the efficiency of a search are reviewed. Successful applications of these machine learning based material discovery approaches are beginning to appear and some of the notable ones are reviewed.
[References]
  1. LeCun Y, Bengio Y, Hinton G, Nature, 521(7553), 436, 2015
  2. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D, Nature, 518(7540), 529, 2015
  3. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D, Nature, 529(7587), 484, 2016
  4. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A, Nature, 559(7715), 547, 2018
  5. Agrawal A, Choudhary A, APL Materials, 4, 053208, 2016
  6. Rupp M, Tkatchenko A, Muller KR, von Lilienfeld OA, Phys. Rev. Lett., 108, 058301, 2012
  7. Hastie T, Tibshirani R, Friedman J, The elements of statistical learning, Springer, New York (2009).
  8. Hansen K, Biegler F, Ramakrishnan R, Pronobis W, von Lilienfeld OA, Muller KR, Tkatchenko A, J. Phys. Chem. Lett., 6, 2326, 2015
  9. Weininger D, J. Chem. Information Modeling, 28, 31, 1988
  10. Weininger D, Weininger A, Weininger JL, J. Chem. Information Modeling, 29, 97, 1989
  11. Kearnes S, McCloskey K, Berndl M, Pande V, Riley P, J. Comput.-Aided Mol. Des., 30, 595, 2016
  12. Duvenaud D, et al., arXiv preprint arXiv:1509.09292 (2015).
  13. Garcia-Garcia A, et al., arXiv preprint arXiv:1704.06857 (2017).
  14. Zhou J, Cui G, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M, AI Open, 1, 57, 2020
  15. Bartok AP, Kondor R, Csanyi G, Phys. Rev. B, 87, 184115, 2013
  16. von Lilienfeld OA, Ramakrishnan R, Rupp M, Knoll A, Int. J. Quantum Chem., 115, 1084, 2015
  17. Valle M, Oganov AR, Acta Crystallogr. Sect. A, 66, 507, 2010
  18. Schutt KT, Glawe H, Brockherde F, Sanna A, Muller KR, Gross EKU, Phys. Rev. B, 89, 205118, 2014
  19. Faber F, Lindmaa A, von Lilienfeld OA, Armiento R, Int. J. Quantum Chem., 115, 1094, 2015
  20. Xie T, Grossman JC, Phys. Rev. Lett., 120, 145301, 2018
  21. Behler J, Parrinello M, Phys. Rev. Lett., 98, 146401, 2007
  22. Behler J, J. Chem. Phys., 134, 074106, 2011
  23. Behler J, Int. J. Quantum Chem., 115, 1032, 2015
  24. Smith JS, Isayev O, Roitberg AE, Chem. Sci., 8, 3192, 2017
  25. Gastegger M, Schwiedrzik L, Bittermann M, Berzsenyi F, Marquetand P, J. Chem. Phys., 148, 241709, 2018
  26. Schutt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Muller KR, J. Chem. Phys., 148, 241722, 2018
  27. Schutt KT, Kessel P, Gastegger M, Nicoli KA, Tkatchenko A, Muller KR, J. Chem. Theory Comput., 15(1), 448, 2018
  28. Lin LC, Berger AH, Martin RL, Kim J, Swisher JA, Jariwala K, Rycroft CH, Bhown AS, Deem M, Haranczyk M, Smit B, Nat. Mater., 11(7), 633, 2012
  29. Wilmer CE, Leaf M, Lee CY, Farha OK, Hauser BG, Hupp JT, Snurr RQ, Nat. Chem., 4, 83, 2012
  30. Gomez-Gualdron DA, Wilmer CE, Farha OK, Hupp JT, Snurr RQ, J. Phys. Chem. C, 118, 6941, 2014
  31. Simon CM, Kim J, Gomez-Gualdron DA, Camp JS, et al., Energy Environ. Sci., 8, 1190, 2015
  32. Mullard A, Nature, 549(7673), 445, 2017
  33. Sanchez-Lengeling B, Aspuru-Guzik A, Science, 361(6400), 360, 2018
  34. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y, Commun. ACM, 63(11), 139, 2020
  35. Kingma DP, Welling M, arXiv preprint arXiv:1312.6114 (2013).
  36. Gomez-Bombarelli R, Wei JN, Duvenaud D, et al., ACS Cent. Sci., 4, 268, 2018
  37. Kusner MJ, Paige B, Hernandez-Lobato JM, ICML, PMLR (2017).
  38. Putin E, Asadulaev A, Ivanenkov Y, Aladinskiy V, Sanchez-Lengeling B, Aspuru-Gzik A, Zhavoronkov A, J. Chem. Information Modeling, 58, 1194, 2018
  39. Segler MHS, Kogej T, Tyrchan C, Waller MP, ACS Cent. Sci., 4, 120, 2018
  40. Guimaraes GL, et al., arXiv preprint arXiv:1705.10843 (2017).
  41. Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A, Mol. Pharm., 14, 3098, 2017
  42. Olivecrona M, Blaschke T, Engkvist O, Chen H, J. Cheminformatics, 9, 48, 2017
  43. De Cao N, Kipf T, arXiv preprint arXiv:1805.11973 (2018).
  44. Gebauer NWA, Gastegger M, Schutt KT, arXiv preprint arXiv:1810.11347 (2018).
  45. Xue D, Gong Y, Yang Z, Chuai G, Qu S, Shen A, Yu J, Liu Q, Wiley Interdiscip. Rev. Comput. Mol. Sci., 9, e1395, 2018
  46. Li Y, Zhang L, Liu Z, J. Cheminformatics, 10(1), 1, 2018
  47. Simonovsky M, Komodakis N, ICANN, Springer, Cham (2018).
  48. Zhou Q, Tang P, Liu S, Pan J, Yan Q, Zhang SC, Proc. Natl. Acad. Sci., 115(28), E6411, 2018
  49. Ziletti A, Kumar D, Scheffler M, Ghiringhelli LM, Nat. Commun., 9, 2775, 2018
  50. Noh J, Kim J, Stein HS, Sanchez-Lengeling B, Gregoire JM, Aspuru-Guzik A, Jung Y, Matter, 1(5), 1370, 2019
  51. Kim S, Noh J, Gu GH, Aspuru-Guzik A, Jung Y, ACS Cent. Sci., 6, 1412, 2020
  52. Jang J, Gu GH, Noh J, Kim J, Jung Y, J. Am. Chem. Soc., 142, 18836, 2020
  53. Bobbitt NS, Snurr RQ, Mol. Simul., 45(14-15), 1069, 2019
  54. Fernandez M, Boyd PG, Daff TD, Aghaji MZ, Woo TK, J. Phys. Chem. Lett., 5, 3056, 2014
  55. Simon CM, Mercado R, Schnell SK, Smit B, Haranczyk M, Chem. Mater., 27, 4459, 2015
  56. Chung YG, Gomez-Gualdron DA, Li P, Leperi KT, et al., Sci. Adv., 2(10), e16009, 2016
  57. Raza A, Sturluson A, Simon CM, Fern X, J. Phys. Chem. C, 124, 19070, 2020
  58. Yao Z, Sanchez-Lengeling B, Bobbitt NS, Bucior BJ, et al., Nat. Mach. Intell., 3, 76, 2021
  59. Lee S, Kim B, Kim J, J. Mater. Chem. A, 7, 2709, 2019
  60. Kim B, Lee S, Kim J, Sci. Adv., 6, eaax93, 2020
  61. Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T, Nat. Commun., 7(1), 1, 2016
  62. Forrester AIJ, Keane AJ, Prog. Aerosp. Sci., 45, 50, 2009
  63. Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ, Nature, 533(7601), 73, 2016
  64. Pruksawan S, Lambard G, Samitsu S, Sodeyama K, Naito M, Sci. Technol. Adv. Mater., 20, 1010, 2019
  65. Mockus J, J. Glob. Optim., 4, 347, 1994
  66. Jones DR, Schonlau M, Welch WJ, J. Glob. Optim., 13, 455, 1998
  67. Streltsov S, Vakili P, J. Glob. Optim., 14, 283, 1999
  68. Rasmussen CE, Williams C, Gaussian processes for machine learning, MIT Press, Cambridge (2006).
  69. Jones DR, Schonlau M, Welch WJ, J. Glob. Optim., 13, 455, 1998
  70. Frazier PI, Powell WB, Dayanik S, SICON, 47, 2410, 2008
  71. Knowles J, IEEE Trans. Evol. Comput., 10, 50, 2006
  72. Das I, Nonlinear multicriteria optimization and robust optimality, Rice University (1997).
  73. Ponweiser W, et al., Multiobjective optimization on a limited budget of evaluations using modelassisted S-metric selection, Springer, Berlin (2008).
  74. Zuluaga M, Sergent G, Krause A, Puschel M, ICML, PMLR (2013).
  75. Emmerich M, Klinkenberg JW, Rapport technique, Leiden University, 34, 7 (2008).
  76. Picheny V, Stat. Comput., 25, 1265, 2015
  77. Hernandez-Lobato D, Hernandez-Lobato J, Shah A, Adams R, ICML, PMLR (2016).
  78. Schonlau M, Computer experiments and global optimization, University of Waterloo (1997).
  79. Sasena MJ, Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations, University of Michigan (2002).
  80. Sasena M, Papalambros P, Goovaerts P, 8th Multidiscip. Anal. Optim. Conf., 4921 (2000).
  81. Audet C, Denni J, Moore D, Booker A, Frank P, 8th Multidiscip. Anal. Optim. Conf., 4891 (2000).
  82. Bichon B, Mahadevan S, Eldred M, 50th AIAA/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. (2009).
  83. Picheny V, Gramacy RB, Wild S, Digabel SL, ICONIP, 1443 (2016).
  84. Lee H, Gramacy R, Linkletter C, Gray G, Pac. J. Optim., 7, 467, 2011
  85. Basudhar A, Dribusch C, Lacaze S, Missoum S, Struct. Multidiscip., 46, 201, 2012
  86. Azimi J, Fern A, Fern XZ, NeurIPS (2010).
  87. Bergstra J, Bardenet R, Bengio Y, Kegl B, NeurIPS, 24 (2011).
  88. Azimi J, Jalali A, Fern X, arXiv preprint arXiv:1202.5597 (2012).
  89. Schonlau M, Welch WJ, Jones DR, Lecture Notes-Monograph Series, 34, 11 (1998).
  90. Contal E, Buffoni D, Robicquet A, Vayatis N, ECML PKDD, 225 (2013).
  91. Desautels T, Krause A, Burdick JW, J. Mach. Learn. Res., 15, 3873, 2014
  92. Ocenasek J, Schwarz J, The state of the art in computational intelligence, 61, Physica, Heidelberg (2000).
  93. Taddy MA, Lee HKH, Gray GA, Griffin JD, Technometrics, 51, 389, 2009
  94. Schmidt J, Marques MRG, Botti S, Marques MAL, Npj Comput. Mater., 5, 1, 2019
  95. Lookman T, Balachandran PV, Xue D, Hogden J, Theiler J, Curr. Opin. Solid State Mater. Sci., 21, 121, 2017
  96. Balachandran PV, Xue D, Theiler J, Hogden J, Lookman T, Sci. Rep., 6, 1, 2016
  97. Talapatra A, Boluki S, Duong T, Qian X, Dougherty E, Arroyave R, Phys. Rev. Mater., 2, 113803, 2018
  98. Griffiths RR, Hernandez-Lobato JM, arXiv preprint arXiv: 1709.05501 (2017).