Issue
Korean Journal of Chemical Engineering,
Vol.38, No.9, 1956-1969, 2021
Structurally ordered nanofiltration membranes prepared by spatially anchoring interfacial polymerization for highly efficient separation properties
The incorporation of various nanofillers into the interfacial polymerization (IP) process is widely applied to prepare higher performance NF membranes. However, few studies have reported the influence of nanofillers on nanocomposite membrane formation in the IP process. Here, an optical microscope was employed to study the change rule in the 8-NH2-POSS/PSA nanocomposite membrane formation process due to the addition of 8-NH2-POSS nanoparticles. First, the addition of 8-NH2-POSS reduced the diffusion rate of the polyacrylamide hydrochloride (PAH) water phase on the surface against the oil phase because of the interaction with the PAH molecules. Furthermore, the 8-NH2-POSS/PSA nanocomposite membrane structure was more homogeneous and exhibited uniform pinhole defects distribution due to the interaction of the 8-NH2-POSS nanoparticles to the PAH segment. A significant separation performance was observed in the 8-NH2-POSS/PSA nanocomposite membrane due to the hydrophilicity and positive charge of the 8-NH2-POSS nanoparticles. The permeation flux and MgCl2 rejection of the 8-NH2-POSS/PSA nanocomposite membrane increased up to 50.5 L/m2 h at 0.5MPa and 94.8%, respectively, which corresponded to increases of 73.5% and 8.7% as compared to the pristine PSA membrane. 8-NH2-POSS/PSA nanocomposite membranes have great application potential in the water softening and treatment of divalent metals ions under acidic conditions.
[References]
  1. Lai GS, Lau WJ, Goh PS, Ismail AF, Tan YH, Chong CY, Krause-Rehberg R, Awad S, Chem. Eng. J., 344, 524, 2018
  2. Zhang Y, Su YL, Peng JM, Zhao XT, Liu JZ, Zhao JJ, Jiang ZY, J. Membr. Sci., 429, 235, 2013
  3. Lv ZW, Hu JH, Zheng JF, Zhang X, Wang LJ, Ind. Eng. Chem. Res., 55(16), 4726, 2016
  4. Liu GH, Jiang ZY, Cheng XX, Chen C, Yang H, Wu H, Pan FS, Zhang P, Cao XZ, J. Membr. Sci., 520, 364, 2016
  5. Wang HY, Wu CL, Wei Z, Li C, Liu Q, RSC Adv., 6, 4673, 2016
  6. Jiang X, Li SW, He SS, Bai YP, Shao L, J. Mater. Chem. A., 6, 15064, 2018
  7. Ji YL, An QF, Zaho FY, Gao CJ, Desalination, 357, 8, 2015
  8. Li YF, Su YL, Dong YN, Zhao XT, Jiang ZY, Zhang RN, Zhao JJ, Desalination, 333(1), 59, 2014
  9. Tang YJ, Xu ZL, Xue SM, Wei YM, Yang H, J. Membr. Sci., 498, 374, 2016
  10. Liao ZP, Fang XF, Xie J, Li Q, Wang DP, Sun XY, Wang LJ, Li JS, ACS Appl. Mater. Interfaces, 11, 5344, 2019
  11. Zhang HZ, Xu ZL, Ding H, Tang YJ, Desalination, 420, 158, 2017
  12. Jeong BH, Hoek EMV, Yan YS, Subramani A, Huang XF, Hurwitz G, Ghosh AK, Jawor A, J. Membr. Sci., 294(1-2), 1, 2007
  13. Ingole PG, Baig MI, Choi W, An X, Choi WK, Lee HK, J. Ind. Eng. Chem., 48, 5, 2017
  14. Cao KT, Jiang ZY, Zhao J, Zhao CH, Gao CY, Pan FS, Wang BY, Cao XZ, Yang J, J. Membr. Sci., 469, 272, 2014
  15. Moochani M, Moghadassi A, Hosseini SM, Bagheripour E, Parvizian F, Korean J. Chem. Eng., 33(9), 2674, 2016
  16. Xue SM, Xu ZL, Tang YJ, Ji CH, ACS Appl. Mater. Interfaces, 8, 19135, 2016
  17. Zhu JY, Qin LJ, Uliana A, Hou JW, Wang J, Zang YT, Li X, Yuan SS, Li J, Tian MM, Lin JY, Bruggen BVD, ACS Appl. Mater. Interfaces, 9, 1975, 2017
  18. Wang CB, Li ZY, Chen JX, Li Z, Yin YH, Cao L, Zhong YL, Wu H, J. Membr. Sci., 523, 273, 2017
  19. Hoang MT, Pham TD, Verheyen D, Nguyen MK, Pham TT, Zhu JY, Bruggen BV, Chem. Eng. Sci., 228, 115998, 2020
  20. Izadmehr N, Mansourpanah Y, Ulbricht M, Rahimpour A, Omidkhah MR, J. Environ. Manage., 276, 111299, 2020
  21. Yuan F, Wang Z, Yu XW, Wei ZH, Li SC, Wang JX, Wang SC, J. Phys. Chem. C., 116, 11496, 2012
  22. Duan JT, Litwiller E, Pinnau I, J. Membr. Sci., 473, 157, 2015
  23. You XD, Ma TY, Su YL, Wu H, Wu MY, Cai HW, Sun GM, Jiang ZY, J. Membr. Sci., 540, 454, 2017
  24. Bandehali S, Moghadassi A, Parvizian F, Hosseini S, Korean J. Chem. Eng., 36(10), 1657, 2019
  25. Lee KP, Bargeman G, de Rooij R, Kemperman AJB, Benes NE, J. Membr. Sci., 523, 487, 2017
  26. Lee KP, Zheng JM, Bargeman G, Kemperman AJB, Benes NE, J. Membr. Sci., 478, 75, 2015
  27. Sabde AD, Trivedi MK, Ramachandhran V, Hanra MS, Misra BM, Desalination, 114(3), 223, 1997
  28. Liu MH, Yao GH, Cheng QB, Ma M, Yu SC, Gao CJ, J. Membr. Sci., 415, 122, 2012
  29. Ghosh AK, Jeong BH, Huang XF, Hoek EMV, J. Membr. Sci., 311(1-2), 34, 2008
  30. Thong ZW, Cui Y, Ong YK, Chung TS, ACS Sustain. Chem. Eng., 4, 5570, 2016
  31. Wang H, Wei Z, Wang HY, Jiang HJ, Li YC, Wu CL, RSC Adv., 9, 2042, 2019
  32. Richardson JJ, Tardy BL, Ejima H, Guo JL, Cui JW, Liang K, Choi GH, Yoo JP, Geest BGD, Caruso F, ACS Appl. Mater. Interfaces, 8, 7449, 2016
  33. He YR, Tang YP, Chung TS, Ind. Eng. Chem. Res., 55(50), 12929, 2016
  34. Zhao FY, Ji YL, Weng XD, Mi YF, Ye CC, An QF, Gao CJ, ACS Appl. Mater. Interfaces, 8, 6693, 2016
  35. Liu MH, Yao GH, Cheng QB, Ma M, Yu SC, Gao CJ, J. Membr. Sci., 415, 122, 2012
  36. Zhang RJ, Yu SL, Shi WX, Wang W, Wang XY, Zhang ZQ, Li L, Zhang B, Bao X, J. Membr. Sci., 542, 68, 2017
  37. Peydayesh M, Mohammadi T, Bakhtiari O, J. Ind. Eng. Chem., 69, 127, 2019
  38. Qiu M, He CJ, J. Hazard. Mater., 367, 339, 2018
  39. Ye CC, An QF, Wu JK, Zhao FY, Zheng PY, Wang NX, Chem. Eng. J., 359, 994, 2018
  40. Ansari S, Moghadassi A, Hosseini SM, Korean J. Chem. Eng., 37(11), 2011, 2020