Issue
Korean Journal of Chemical Engineering,
Vol.38, No.9, 1843-1858, 2021
Adsorption of heavy metal ions via apple waste low-cost adsorbent: Characterization and performance
This research focuses on the enhancement of the biosorption process via apple waste (a cheap adsorbent) for the treatment of heavy metals (including Cu2+, Cd2+, Zn2+ and Pb2+). The apple pomace modified by potassium permanganate (ACAPMP), apple pomace modified by sodium hydroxide (APMSH) and activated carbon apple pomace (ACAP) were synthesized as adsorbents for the removal of heavy metals. The prepared biomass adsorbents were analyzed by FTIR, BET, EDS and FE-SEM. The Box-Behnken design was applied to optimize the process. The influence of pH, the time of removal, the type of adsorbent and concentration of heavy metal on the adsorption performance were investigated by batch experiments. The results revealed that ACAP, APMS and ACAP adsorbents were able to remove approximately 95% of zinc, cadmium, lead and copper from wastewater. The ACAPMP indicated the best performance compared to other adsorbents in optimal condition. Also, the results exhibited excellent removal performance for Pb2+, Zn2+, Cu2+ and Cd2+ with maximum adsorption percent 99.72%, 99.28%, 99.18% and 96.45%, respectively. To define the best correlation, the equilibrium data for adsorption were studied by using Langmuir and Freundlich isotherm models. The FTIR, BET and EDS characterization of functional groups and morphology confirm the suitable preparation of ACAPMP, ACAP and APMSH. The adsorption results indicate that apple waste as low-cost and high surface capacity adsorbents can be used.
[References]
  1. Emsley J, Nature’s building blocks, new edition, Oxford Univ. Press, Oxford (2011).
  2. Kozin LF, Hansen SC, Mercury handbook: chemistry, applications and environmental impact, R. soc. chem., UK (2013).
  3. Ali H, Khan E, Toxicol. Environ. Chem., 100, 6, 2018
  4. Tolcin A, U.S. Geological Survey, Mineral Commodity Summaries 2020, Independently Published (2020).
  5. Statista Research Department. World production of lead from 2006 to 2018 2019, Dec 1; Available from: https://www.statista.com/statistics/264872/world-production-of-lead-metal/ (2020).
  6. Lide DR, CRC handbook of chemistry and physics, Vol. 85, CRC press, Boca Raton (2004).
  7. Dart RC, Hurlbut KMa Boyer-Hassen LV, Medical toxicology, Lippincott Williams & Wilkins, Philadelphia (2004).
  8. Denoyer D, Clatworthy SA, Cater MA, Met. Ions Life Sci., 18, 1, 2018
  9. Statista Research Department, Total copper mine production worldwide from 2006 to 2020 (2021).
  10. Deubzer O, Waste electrical and electronic equipment (WEEE) handbook, Elsevier, Netherlands (2019).
  11. Ohgaki M, Takeguchi Y, Okawa S, Namiki K, R. Soc. Open Sci., 6, 1, 2019
  12. Masindi V, Muedi KL, Heavy Metals, 10, 115, 2018
  13. WHO G, World Health Organ., 216, 303 (2011).
  14. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK, Ecotoxicol. Environ. Saf., 148, 702, 2018
  15. Yous R, Mohellebi F, Cherifi H, Amrane A, Korean J. Chem. Eng., 35(4), 890, 2018
  16. Fiyadh SS, AlSaadi MA, Jaafar WZB, AlOmar MK, Fayaed SS, Mohd NSB, Hin LS, El-Shafie A, J. Clean Prod., 230, 783, 2019
  17. Chen H, Xie A, You S, IOP Conf. Ser.: Mater. Sci. Eng., 301 (2018).
  18. Liew RK, Chai C, Yek PNY, Phang XY, Chong MY, Nam WL, Su MH, Lam WH, Ma NL, Lam SS, J. Clean Prod., 208, 1436, 2019
  19. Foong SY, Liew RK, Yang Y, Cheng YW, Yek PNY, Mahari WAW, Lee XY, Han CS, Vo DVN, Van Le Q, Chem. Eng. J., 389, 1, 2020
  20. Marsh H, Reinoso FR, Activated carbon, Elsevier, Netherlands (2006).
  21. Zhao MH, Xu Y, Zhang CS, Rong HW, Zeng GM, Appl. Microbiol. Biotechnol., 100(15), 6509, 2016
  22. Chand P, Pakade YB, Environ. Sci. Pollut. Res., 22, 10919, 2015
  23. Chand P, Bafana A, Pakade YB, Int. Biodeterior. Biodegrad., 97, 60, 2015
  24. Chand P, Bokare M, Pakade YB, Environ. Sci. Pollut. Res., 24, 10454, 2017
  25. Heraldy E, Lestari WW, Permatasari D, Arimurti DD, J. Environ. Chem. Eng., 6, 1201, 2018
  26. Enniya I, Rghioui L, Jourani A, Sustainable Chem. Pharm., 7, 9, 2018
  27. Jangde V, Umathe P, Antony PS, Shinde V, Pakade Y, Int. J. Environ. Sci. Technol., 16, 6347, 2019
  28. Cheok CY, Adzahan NM, Rahman RA, Abedin NHZ, Hussain N, Sulaiman R, Chong GH, Crit. Rev. Food Sci. Nutr., 58, 335, 2018
  29. Sostaric TD, Petrovic MS, Pastor FT, Loncarevic DR, Petrovic JT, Milojkovic JV, Stojanovic MD, J. Mol. Liq., 259, 340, 2018
  30. Wang HY, Gao B, Wang SS, Fang J, Xue YW, Yang K, Bioresour. Technol., 197, 356, 2015
  31. Langmuir I, J. Am. Chem. Soc., 38, 2221, 1916
  32. Freundlich H, Z. Phys. Chem., 57, 385, 1907
  33. Myers RH, et al., Response surface methodology: process and product optimization using designed experiments (2016).
  34. Melnikova F, Geohagen BC, Gavin T, LoPachin RM, Anastas PT, Coish P, Herrf DW, NeuroToxicology, 79, 95, 2020
  35. Qi C, Liu H, Deng S, Yang A, Li Z, Res. Che. Inter., 44, 2889, 2018
  36. Czitrom V, Am. Statistician, 53, 126, 1999
  37. Kaveeshwar AR, Ponnusamy SK, Revellame ED, Gang DD, Zappi ME, Subramaniam R, Process Saf. Environ. Prot., 114, 107, 2018
  38. Park JH, Ok YS, Kim SH, Cho JS, Heo JS, Delaune RD, Seo DC, Chemosphere, 142, 77, 2016
  39. Niu JJ, Wang JN, Jiang Y, Su LF, Ma J, Microporous Mesoporous Mater., 100, 1, 2007
  40. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA, Introduction to spectroscopy, Cengage Learning, Boston (2008).
  41. Karimi A, Fatehifar E, Alizadeh R, Iran. J. Chem. Eng., 10, 51, 2013
  42. Bhongale G, Kulkarni D, Sapre V, Bull. Mater. Sci., 15, 121, 1992
  43. Patil SA, Mahajan VC, Ghatage AK, Lotke SD, Mater. Chem. Phys., 57, 86, 1998
  44. Pradeep A, Chandrasekaran G, Mater. Lett., 60, 371, 2006
  45. Doke KM, Khan EM, Arabian J. Chem., 10, 252, 2017
  46. N'Goran KPDA, Diabate D, Yao KM, Kouassi NLB, Gnonsoro UP, Kinimo KC, Trokourey, Arabian J. Geosci., 11, 498, 2018
  47. Wang C, Wang H, J. Clean Prod., 184, 921, 2018