Issue
Korean Journal of Chemical Engineering,
Vol.38, No.9, 1757-1767, 2021
Techno-economic and environmental feasibility of mineral carbonation technology for carbon neutrality: A Perspective
Although various CO2 capture and utilization (CCU) technologies are being researched and developed intensively for the purpose of lowering greenhouse gas emissions, most current technologies remain at low technology readiness levels for industrial use and are less economical compared to conventional processes. Mineral carbonation is a CO2 utilization technology with low net CO2 emissions and high CO2 reduction potential, and various commercialization studies are underway around the world. This manuscript reviews the potential of mineral carbonation as a general CCU technology and the techno-economic and environmental feasibility of a representative technology, which produces sodium bicarbonate through the saline water electrolysis and carbonation steps, and examines the potential CO2 reduction derived from the application of this technology. The future implementation of mineral carbonation technology in ocean alkalinity enhancement for sequestrating atmospheric CO2 or the production of abandoned mine backfill materials is also discussed i order to deploy the technology at much larger scales for a meaningful contribution to the reduction of greenhouse gas emissions.
[References]
  1. Mazzotti M, et al., Mineral carbonation and industrial uses of carbon dioxide, in IPCC special report on carbon diox-ide capture and storage, 319 (2005).
  2. Song CF, Catal. Today, 115, 10, 2006
  3. Brinckerhoff P, Accelerating the uptake of CCS: Industrial use of captured carbon dioxide, Global CCS Institute (2011).
  4. Day W, Capture technologies: mineralisation. International symposium on the Sustainable Use of Low Rank Coals, Melbourne (2010).
  5. Long Term Residue Management Strategy, ALCOA (2012).
  6. AI Yablonsky SB, Legere D, Decision Point 1 Topical Report, Skyonic Corporation (2013).
  7. Huang CH, Tan CS, Aerosol Air Quality Res., 14, 2, 2014
  8. Pan SY, Chiang A, Chang EE, Lin YP, Kim H, Chiang PC, Aerosol Air Quality Res., 15, 1072, 2015
  9. Lee JH, Lee JH, Park IK, Lee CH, J. CO2 Utilization, 26, 522, 2018
  10. Putting CO2 to use: Creating value from emission, IEA (2019).
  11. Lee JH, Lee DW, Kwak CY, Kang KJ, Lee JH, Ind. Eng. Chem. Res., 58, 34, 2019
  12. CO2/Sodium bicarbonate project, Available from: www.twence.com.
  13. Large volume solid inorganic chemicals family: Process BREF for soda ash, European Soda Ash Producers Association (2004).
  14. Steinhauser G, J. Clean Prod., 16, 7, 2008
  15. Lee JH, Park IK, Duchesne D, Chen L, Lee CH, Lee JH, J. CO2 Utilization, 41, 1, 2020
  16. Lindskog S, Coleman JE, Proceedings of the National Academy of Sciences, 70, 9 (1973).
  17. Zhang SH, Zhang ZH, Lu YQ, Rostam-Abadi M, Jones A, Bioresour. Technol., 102(22), 10194, 2011
  18. Pierre AC, Int. Sch. Res. Notices, 2012, 1, 2012
  19. Hwang YE, Kim K, Seo H, Koh DY, ACS Sustain. Chem. Eng., 8, 41, 2020
  20. Lee JH, Techno-economic and environmental evaluation of CO2 mineralization technology based on bench scale experiment, Ph.D. Dissertation, KAIST (2021).
  21. Al Saadi MM, Al Harrsi EM, Mushafri YG, Al Farsi AY, Al Maharsi GJ, Global J. Eng. Sci., 1, 3, 2019
  22. Chlistunoff J, Final technical report-advanced chlor-alkali technology, Los Alamos National Laboratory (2004).
  23. Park IK, Ahn CY, Lee JH, Lee DW, Lee CH, Cho YH, Sung YE, Int. J. Hydrog. Energy, 44, 31, 2019
  24. Lipp L, Gottesfeld S, Chlistunoff J, J. Appl. Electrochem., 35, 10, 2005
  25. Moussallem I, Jorissen J, Kunz U, Pinnow S, Turek T, J. Appl. Electrochem., 38, 9, 2008
  26. Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K, IPCC guidelines for national greenhouse gas inventories (2019).
  27. Cho YK, Nam SY, Lee YM, Kim CS, Seo SS, Jo SH, Lee HW, Ahn JW, J. Environm. Sci. Int., 26, 11, 2017
  28. Seo JH, Baek CS, Kim YJ, Choi MK, Cho KH, Ahn JW, J. Energy Eng., 26, 1, 2017
  29. Jang JG, Ji S, Ahn JW, J. Korean Inst. Resources Recycling, 26, 2, 2017
  30. Jang JG, et al., Economic Evaluation and Commercialization Plan of CO2 Mineralization Technology, Science and Technology Policy Institute (2019).
  31. Renforth P, Henderson G, Rev. Geophys., 55, 3, 2017
  32. Kheshgi HS, Energy, 2, 9, 1995
  33. Rau GH, Environm. Sci. Technol., 45, 3, 2011
  34. Lee J, Park M, Joo J, Gil JW, J. Korean Soc. Environm. Engineers, 39, 3, 2017
  35. Rubin ES, Davison JE, Herzog HJ, Int. J. Greenhouse Gas Control, 40, 378, 2015
  36. Song JK, Kim DH, Korean Chem. Eng. Res., 58(1), 1, 2020