Issue
Korean Journal of Chemical Engineering,
Vol.38, No.8, 1703-1714, 2021
3-D modeling of proton exchange fuel cell cathode with a novel random generation of gas diffusion porous layer
A 3D model for a section of cathode fuel cell comprised of a bipolar plate, a gas diffusion layer (GDL) and a catalyst layer was simulated. The diameter of the carbon fiber GDL is assumed to be the same; moreover, a new and simple method is introduced for the reconstruction of this layer numerically. This method gives the ability to model the heterogeneous and anisotropic structure of the GDL; furthermore, it allows easy implementation and provides realistic results with consideration of the lack of overlap between carbon fibers. The lattice Boltzmann method (LBM) was employed to simulate the flow and the electrochemical reaction. The impacts of changes in the activation potential and the GDL carbon fiber diameter on oxygen species and water vapor, as well as the electric current density distribution over the catalyst layer, were studied. The results showed that at higher values o f the activation potential, the concentration of oxygen near the catalyst layer was lower. The current density over the catalyst layer also increased by increasing the activation potential; on the other hand, the mole fraction of water vapor in the cathode increased with the increase in the flow of gas products. Consequently, results indicated that the variation in the GDL carbon fiber diameter affects the distribution of reactants.
[References]
  1. Barbir F, PEM fuel cells: Theory and practice, Academic press (2012).
  2. Feroldi D, Basualdo M, Green Energy Technol., 87, 49, 2012
  3. Frey H, Munch W, BWK - Energie-Fachmagazin, 56, 58, 2004
  4. Song GH, Meng H, Acta Mech. Sin. Xuebao, 29, 318, 2013
  5. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981, 2011
  6. Spiegel, Colleen. PEM fuel cell modeling and simulation using MATLAB. Elsevier (2011).
  7. Didari S, Harris TAL, Huang W, Tessier SW, Wang Y, ECS Trans., 41, 499, 2011
  8. Gostick JI, Ioannidis MA, Fowler MW, Pritzker MD, J. Power Sources, 173(1), 277, 2007
  9. Pourmahmoud N, Rezazadeh S, Mirzaee I, Heidarpoor V, J. Mech. Sci. Technol., 25, 2665, 2011
  10. Shi Z, Wang X, J. Fuel Cell Sci. Technol., 9, 021001, 2012
  11. Wu R, Zhu X, Liao Q, Chen R, Cui GM, Int. J. Hydrog. Energy, 38(10), 4067, 2013
  12. Lee Y, J. Mech. Sci. Technol., 31, 1959, 2017
  13. Lee Y, J. Mech. Sci. Technol., 31, 1959, 2017
  14. Abdollahzadeh M, Pascoa JC, Ranjbar AA, Esmaili Q, Energy, 68, 478, 2014
  15. Maslan NH, Gau MM, Masdar MS, Rosli MI, J. Eng. Sci. Technol., 11, 85, 2016
  16. Liang MC, Liu YM, Xiao BQ, Yang SS, Wang ZK, Han HM, Int. J. Hydrog. Energy, 43(37), 17880, 2018
  17. Wang Y, Wang CY, Chen KS, Electrochim. Acta, 52(12), 3965, 2007
  18. Radhakrishnan V, Haridoss P, Mater. Des., 32, 861, 2011
  19. Lee KJ, Nam JH, Kim CJ, Electrochim. Acta, 54(4), 1166, 2009
  20. Ostadi H, Rama P, Liu Y, Chen R, Zhang XX, Jiang K, Chem. Eng. Sci., 65(6), 2213, 2010
  21. Becker J, Schulz V, Wiegmann A, J. Fuel Cell Sci. Technol., 5, 021006, 2008
  22. Vazquez L, Creus AH, Carro P, Ocon P, Herrasti P, Palacio C, Vara JM, Salvarezza RC, Arvia AJ, J. Phys. Chem., 96, 10454, 1992
  23. Gobel M, Godehardt M, Schladitz K, J. Power Sources, 355, 8, 2017
  24. Liao JD, Yang GG, Li SA, Shen QW, Jiang ZH, Wang H, Xu LY, Espinoza-Andaluz M, Pan XX, Energy Fuels, 35(3), 2654, 2021
  25. Kakaee AH, Molaeimanesh GR, Garmaroudi MHE, Int. J. Hydrog. Energy, 43(32), 15481, 2018
  26. Mu YT, Chen L, He YL, Tao WQ, Build. Environ., 92, 236, 2015
  27. Bahoosh R, Jafari M, Bahrainian SS, J. Heat Mass Transf. Res., 6, 105, 2019
  28. Chapelle I, Levesque M, Brøndsted P, Foldschack MR, Kusano Y, in ICCM Int. Conf. Compos. Mater. (2015).
  29. Schladitz K, Peters S, Reinel-Bitzer D, Wiegmann A, Ohser J, Comput. Mater. Sci., 38, 56, 2006
  30. Peyrega C, Jeulin D, Delisee C, Malvestio J, Image Anal. Stereol., 28, 129, 2009
  31. Chen L, Luan HB, He YL, Tao WQ, Int. J. Therm. Sci., 51, 132, 2012
  32. Schulz VP, Becker J, Wiegmann A, Mukherjee PP, Wang CY, J. Electrochem. Soc., 154(4), B419, 2007
  33. Hao L, Cheng P, J. Power Sources, 186(1), 104, 2009
  34. Wang Y, Cho SC, Thiedmann R, Schmidt V, Lehnert W, Feng XH, Int. J. Heat Mass Transf., 53(5-6), 1128, 2010
  35. Feder J, J. Theor. Biol., 87, 237, 1980
  36. Naddeo F, Cappetti N, Naddeo A, Comput. Mater. Sci., 81, 239, 2014
  37. Moussaddy H, Doctoral dissertation, Montral University (2013).
  38. Provatas N, Haataja M, Asikainen J, Majaniemi S, Alava M, Ala-Nissila T, Colloids Surf. A: Physicochem. Eng. Asp., 165, 209, 2000
  39. Falcucci G, Ubertini S, Galloni E, Jannelli E, in EFC 2009 -Piero Lunghi Conf. Proc. 3rd Eur. Fuel Cell Technol. Appl. Conf. (2009).
  40. Han B, Yu J, Meng H, J. Power Sources, 202, 175, 2012
  41. Xiao LS, Luo M, Zhang H, Zeis R, Sui PC, J. Electrochem. Soc., 166(6), F377, 2019
  42. Molaeimanesh GR, Shojaeefard MH, Moqaddari MR, Korean J. Chem. Eng., 36(1), 136, 2019
  43. Bhatnagar PL, Gross EP, Krook M, Phys. Rev., 94, 511, 1954
  44. Molaeimanesh GR, Akbari MH, Korean J. Chem. Eng., 32(3), 397, 2015
  45. Shan X, Chen H, Phys. Rev. E, 47, 1815, 1993
  46. Mohamad AA, Lattice boltzmann method, 2nd Ed., Springer-Verlag, London (2011).
  47. Succi S, Oxford Univ. Press, Oxford (2001).
  48. Ashorynejad Hamid Reza, Javaherdeh Koroush, Van den Akker Harry E. A., Int. J. Hydrog. Energy, 41(32), 14239, 2016
  49. Kamali MR, Sundaresan S, Van den Akker HEA, Gillissen JJJ, Chem. Eng. J., 207-208, 587, 2012
  50. Vinet L, Zhedanov A, Arch. Ophthalmol., 122, 552, 2010
  51. Anton H, Methods Enzymol., 461, 397, 2009
  52. Molaeimanesh GR, Akbari MH, J. Power Sources, 258, 89, 2014
  53. Zou Q, He X, Phys. Fluids, 9, 1591, 1997
  54. Nield DA, Bejan A, Convection in porous media, Springer, New York (2013).
  55. Kaviany M, Mech. Eng. Ser., 53, 726, 1995
  56. Koponen A, Kandhai D, Hellen E, Alava M, Hoekstra A, Kataja M, Niskanen K, Sloot P, Timonen J, Phys. Rev. Lett., 80, 716, 1998
  57. Davies CN, Proc. Inst. Mech. Eng., 167, 185, 1952
  58. Filippova O, Hanel D, J. Comput. Phys., 147, 219, 1998
  59. Koponen A, Kataja M, Timonen J, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., 56, 3319 (1997).