Issue
Korean Journal of Chemical Engineering,
Vol.38, No.7, 1522-1528, 2021
Influence of post-heat treatment on photocatalytic activity in metal-embedded TiO2 nanofibers
With the increasing concerns for environmental pollution, photocatalysts have been attracting attention due to their environmentally friendly characteristics, low cost, and simple processing. Titanium dioxide (TiO2) has been commonly used as a photocatalyst owing to its white pigment, excellent photocatalytic activity and low cost; however, its poor pollutant adsorption properties and high electron-hole recombination ratio limit its practical application. Transition metals such as nickel exhibit excellent electron-trapping capability, lowering the rate of electron-hole recombination and facilitating the generation of oxygen free radicals. One-dimensional nanofibers fabricated by electrospinning methods not only develop mesopores but can also make photocatalytic materials with a relatively high specific surface area, thereby increasing the adsorption of pollutants. In this study, transition metal-embedded TiO2 was fabricated by an electrospinning method, and the influence of post-calcination in a reducing atmosphere on the photocatalytic activity was investigated. The photocatalytic properties were performed by decomposition of Rhodamine B under visible light irradiation using fabricated material. Among the investigated samples, Ni-embedded TiO2 nanofibers showed the fastest decomposition of Rhodamine B under visible light irradiation due to a relatively high number of oxygen vacancies, lower Fermi level, small particle size, well-developed mesopores and relatively high specific surface area.
[References]
  1. Ouyang W, Liu S, Zhao L, Cao L, Jiang S, Hou H, Compos. Commun., 9, 76, 2018
  2. Jiang L, Wang Y, Feng C, Procedia Eng., 45, 993, 2012
  3. Mahlambi MM, et al., J. Nanomaterials, 2012, Article ID 302046 (2012).
  4. Huang F, et al., Semiconductor photocatalysis materials-mechanisms and applicaations, IntechOpen Limited, London (2016).
  5. Khojasteh H, Salavati-Niasari M, Mortazavi-Derazkola S, J. Mater. Sci.: Mater. Electron., 27(4), 3599, 2016
  6. Manzoor M, Rafiq A, Ikram M, Nafees M, Ali S, Int. Nano Lett., 8(1), 1, 2018
  7. Bashiri R, Norani MM, Kait CF, Sufian S, Adv. Mater. Res., 925, 248, 2014
  8. Woo S, Kim W, Kim S, Rhee C, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 449, 1151, 2007
  9. Nakhate GG, Nikam VS, Kanade KG, Arbuj S, Kale BB, Baeg JO, Mater. Chem. Phys., 124(2-3), 976, 2010
  10. Khore SK, Kadam SR, Naik SD, Kale BB, Sonawane RS, New J. Chem., 42(13), 10958, 2018
  11. Prabakar K, Takahashi T, Nezuka T, Takahashi K, Nakashima T, Kubota Y, Fulishima A, Renew. Energy, 33(2), 277, 2008
  12. Song K, Han X, Shao G, J. Alloy. Compd., 551, 118, 2013
  13. Sakthivel T, Kumar KA, Senthilselvan J, Jagannathan K, J. Mater. Sci.: Mater. Electron., 29(3), 2228, 2018
  14. Ding D, Ning C, Wang X, RSC Adv., 5(116), 95478, 2015
  15. Gao B, Wang T, Fan X, Gong H, Guo H, Xia W, Feng Y, Huang X, He J, Inorg. Chem. Front., 4(5), 898, 2017
  16. Buddee S, Suwanchawalit C, Wongnawa S, Dig. J. Nanomater. Biostruct., 12(3), 829, 2017
  17. Hirakawa T, Kamat PV, J. Am. Chem. Soc., 127(11), 3928, 2005
  18. Park JY, Choi KI, Lee JH, Hwnag CH, Choi DY, Lee JW, Mater. Lett., 97(15), 64, 2013
  19. Guan B, Yu J, Guo S, Yu S, Han S, Nanoscale Adv., 2, 1352, 2020
  20. Nagaraj G, Senthil R, Boddula R, Ravichandaran K, Curr. Anal. Chem., 17, 279, 2021
  21. Jing DW, Zhang YJ, Guo LJ, Chem. Phys. Lett., 415(1-3), 74, 2005
  22. Wang T, Meng X, Liu G, Chang K, Li P, Kang Q, Liu L, Li M, Ouyang S, Ye J, J. Mater. Chem. A, 3(18), 9491, 2015
  23. Nirmala R, Kim HY, Yi C, Barakat NAM, Navamathavan R, El-Newehy M, Int. J. Hydrog. Energy, 37(13), 10036, 2012
  24. Albetran H, Dong Y, Low IM, J. Asian Ceram. Societies, 3(4), 292, 2015
  25. Wang C, Tong Y, Sun Z, Xin Y, Yan E, Huang Z, Mater. Lett., 61(29), 5125, 2007
  26. Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC, J. Am. Ceram. Soc., 89(2), 395, 2006
  27. Park JY, Kim SS, Metals Mater. Int., 15(1), 95, 2009
  28. Chronakis IS, J. Mater. Process. Technol., 167(2-3), 283, 2005
  29. Aryal S, Kim CK, Kim KW, Khil MS, Kim HY, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 28(1), 75, 2008
  30. Cahyaningsih D, Taufik A, Saleh R, J. Phys.: Conf. Ser., 1442, 012017, 2020
  31. Rajeh S, Barhoumi A, Mhamdi A, Leroy G, Duponchel B, Amlouk M, Guermazi S, Bull. Mater. Sci., 39, 177, 2016
  32. Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N, Nature, 418, 164, 2002
  33. Ding B, Kim CK, Kim HY, Seo MK, Park SJ, Fibers Polym., 5(2), 105, 2004
  34. Zhang J, Zhou P, Liu J, Yu J, Phys. Chem. Chem. Phys., 16(38), 20382, 2014
  35. Deka DJ, Kim J, Gunduz S, Aouine M, Millet JMM, Co AC, Ozkan US, Appl. Catal. B: Environ., 286, 119917, 2021
  36. Kim DS, Han SJ, Kwak SY, J. Colloid Interface Sci., 316(1), 85, 2007
  37. Chen S, Xiao Y, Wang Y, Hu Z, Zhao H, Xie W, Nanomaterials, 8(4), 245, 2018
  38. Janotti A, Varley J, Rinke P, Umezawa N, Kresse G, Van de Walle CG, Phys. Rev. B, 81(8), 085212, 2010
  39. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y, Nano Lett., 11(7), 3026, 2011
  40. Feng N, Liu F, Huang M, Zheng A, Wang Q, Chen T, Cao G, Xu J, Fan J, Deng F, Sci. Rep., 6, 1, 2016
  41. Lepcha A, Maccato C, Mettenborger A, Andreu T, Mayrhofer L, Walter M, Olthof S, Ruoko TP, Klein A, Moseler M, J. Phys. Chem. C, 119, 18835, 2015
  42. Lee NW, Jung JW, Lee JS, Jang HY, Kim ID, Ryu WH, Electrochim. Acta, 263, 417, 2018
  43. Kim DH, Choi DK, Kim SJ, Lee KS, Catal. Commun., 9(5), 654, 2008